{"title":"Multiple Preheating Processes for Suppressing Liquefaction Cracks in IN738LC Superalloy Fabricated by Electron Beam Powder Bed Fusion (EB-PBF).","authors":"Yang Li, Hongyu Long, Bo Wei, Jun Zhou, Feng Lin","doi":"10.3390/ma17225667","DOIUrl":null,"url":null,"abstract":"<p><p>In additive manufacturing, controlling hot cracking in non-weldable nickel-based superalloys poses a significant challenge for forming complex components. This study introduces a multiple preheating process for the forming surface in electron beam powder bed fusion (EB-PBF), employing a dual-band infrared surface temperature measurement technique instead of the conventional base plate thermocouple method. This new approach reduces the temperature drop during forming, decreasing surface cooling by 28.6% compared to traditional methods. Additionally, the precipitation of carbides and borides is reduced by 38.5% and 80.1%, respectively, lowering the sensitivity to liquefaction cracking. This technique enables crack-free forming at a lower powder bed preheating temperature (1000 °C), thereby improving the powder recycling rate by minimizing powder sintering. Microstructural analysis confirms that this method reduces low-melting eutectic formation and alleviates liquefaction cracking at high-angle grain boundaries caused by thermal cycling. Consequently, crack-free IN738 specimens with high-temperature durability were successfully achieved, providing a promising approach for the EB-PBF fabrication of crack-resistant IN738 components.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 22","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17225667","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In additive manufacturing, controlling hot cracking in non-weldable nickel-based superalloys poses a significant challenge for forming complex components. This study introduces a multiple preheating process for the forming surface in electron beam powder bed fusion (EB-PBF), employing a dual-band infrared surface temperature measurement technique instead of the conventional base plate thermocouple method. This new approach reduces the temperature drop during forming, decreasing surface cooling by 28.6% compared to traditional methods. Additionally, the precipitation of carbides and borides is reduced by 38.5% and 80.1%, respectively, lowering the sensitivity to liquefaction cracking. This technique enables crack-free forming at a lower powder bed preheating temperature (1000 °C), thereby improving the powder recycling rate by minimizing powder sintering. Microstructural analysis confirms that this method reduces low-melting eutectic formation and alleviates liquefaction cracking at high-angle grain boundaries caused by thermal cycling. Consequently, crack-free IN738 specimens with high-temperature durability were successfully achieved, providing a promising approach for the EB-PBF fabrication of crack-resistant IN738 components.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.