Giulia Pedrizzetti, Enrico Baroni, Michele Gragnanini, Rita Bottacchiari, Mattia Merlin, Giovanni Pulci, Francesco Marra
{"title":"Effect of Dehydrogenation and Heat Treatments on the Microstructure and Tribological Behavior of Electroless Ni-P Nanocomposite Coatings.","authors":"Giulia Pedrizzetti, Enrico Baroni, Michele Gragnanini, Rita Bottacchiari, Mattia Merlin, Giovanni Pulci, Francesco Marra","doi":"10.3390/ma17225657","DOIUrl":null,"url":null,"abstract":"<p><p>High phosphorus Ni-P coatings, both unreinforced and modified by the addition of alumina (Al<sub>2</sub>O<sub>3</sub>) and zirconia (ZrO<sub>2</sub>) nanoparticles, were manufactured by electroless deposition technique and heat-treated with different temperature and duration schedules. The effect of dehydrogenation (200 °C for 2 h) and its combination with crystallization heat treatment was studied in terms of microstructural changes and wear resistance. The amorphous structure of the coatings was not altered by the introduction of both Al<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub> nanoparticles, and the addition of 1.5 g/L of ZrO<sub>2</sub> yielded the highest microhardness due to better particles dispersion. Dehydrogenation improved hardness because of the early stages of grain growth; however, the greatest improvement in hardness (+120% compared to unreinforced Ni-P) was obtained after annealing at 400 °C for 1 h, because of the microprecipitation of the Ni<sub>3</sub>P crystalline phase induced by thermal treatment. No detectable differences in hardness and microstructure were detected when annealing at 400 °C for 1 h with or without prior dehydrogenation; however, the dehydrogenated coatings exhibited a lower Young's modulus. ZrO<sub>2</sub>-reinforced coatings demonstrated improved wear resistance, and wear tests revealed that dehydrogenation is fundamental for lowering the coefficient of friction (-14%) and wear rate (-97%) when performed before annealing at 400 °C for 1 h. The analysis of the wear tracks showed that the non-dehydrogenated samples failed by complete coating delamination from the substrate, with abrasion identified as the predominant wear mechanism. Conversely, the dehydrogenated samples demonstrated better resistance due to the formation of a protective oxide layer, leading to an overall increase in the coating wear resistance.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 22","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17225657","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High phosphorus Ni-P coatings, both unreinforced and modified by the addition of alumina (Al2O3) and zirconia (ZrO2) nanoparticles, were manufactured by electroless deposition technique and heat-treated with different temperature and duration schedules. The effect of dehydrogenation (200 °C for 2 h) and its combination with crystallization heat treatment was studied in terms of microstructural changes and wear resistance. The amorphous structure of the coatings was not altered by the introduction of both Al2O3 and ZrO2 nanoparticles, and the addition of 1.5 g/L of ZrO2 yielded the highest microhardness due to better particles dispersion. Dehydrogenation improved hardness because of the early stages of grain growth; however, the greatest improvement in hardness (+120% compared to unreinforced Ni-P) was obtained after annealing at 400 °C for 1 h, because of the microprecipitation of the Ni3P crystalline phase induced by thermal treatment. No detectable differences in hardness and microstructure were detected when annealing at 400 °C for 1 h with or without prior dehydrogenation; however, the dehydrogenated coatings exhibited a lower Young's modulus. ZrO2-reinforced coatings demonstrated improved wear resistance, and wear tests revealed that dehydrogenation is fundamental for lowering the coefficient of friction (-14%) and wear rate (-97%) when performed before annealing at 400 °C for 1 h. The analysis of the wear tracks showed that the non-dehydrogenated samples failed by complete coating delamination from the substrate, with abrasion identified as the predominant wear mechanism. Conversely, the dehydrogenated samples demonstrated better resistance due to the formation of a protective oxide layer, leading to an overall increase in the coating wear resistance.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.