{"title":"A Novel Graphene-Based Nanomaterial for the Development of a Pelvic Implant to Treat Pelvic Organ Prolapse.","authors":"Amelia Seifalian, Alex Digesu, Vik Khullar","doi":"10.3390/jfb15110351","DOIUrl":null,"url":null,"abstract":"<p><p>Graphene is the wonder material of the 21st century, promising cutting-edge advancements in material science with significant applications across all industries. This study investigates the use of a graphene-based nanomaterials (GBNs) ans trade-registered Hastalex<sup>®</sup>, as novel materials for surgical implants aimed at treating pelvic organ prolapse (POP). This study investigates the mechanical properties and physicochemical characteristics of the material, mainly focusing on its potential to address the limitations of existing polypropylene (PP) implants, which has been associated with numerous complications and banned across multiple countries. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) confirmed the bonding between functionalised graphene oxide (FGO) and the base polymer chain. Hastalex exhibited excellent mechanical properties with 58 N/mm<sup>2</sup> maximum tensile strength at break and 701% elongation at break, whilst maintaining its shape with no plastic deformation. These results were comparable to that of sheep pelvic muscular tissue. Hastalex demonstrated its hydrophilic properties from contact angle measurements. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed a uniform plane with surface nanotopography, promoting cell-to-material interaction. The results confirmed the suitability of Hastalex in the development of a new pelvic membrane to treat POP.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 11","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595893/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15110351","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene is the wonder material of the 21st century, promising cutting-edge advancements in material science with significant applications across all industries. This study investigates the use of a graphene-based nanomaterials (GBNs) ans trade-registered Hastalex®, as novel materials for surgical implants aimed at treating pelvic organ prolapse (POP). This study investigates the mechanical properties and physicochemical characteristics of the material, mainly focusing on its potential to address the limitations of existing polypropylene (PP) implants, which has been associated with numerous complications and banned across multiple countries. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) confirmed the bonding between functionalised graphene oxide (FGO) and the base polymer chain. Hastalex exhibited excellent mechanical properties with 58 N/mm2 maximum tensile strength at break and 701% elongation at break, whilst maintaining its shape with no plastic deformation. These results were comparable to that of sheep pelvic muscular tissue. Hastalex demonstrated its hydrophilic properties from contact angle measurements. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed a uniform plane with surface nanotopography, promoting cell-to-material interaction. The results confirmed the suitability of Hastalex in the development of a new pelvic membrane to treat POP.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.