Kuk Hui Son, Dong-Ha Kim, Seunghye Park, Hyun Jae Kim, Mira Park, Seung-Jin Kim, Sang Jin Lee, Keunsun Ahn, Jin Woo Lee
{"title":"Spherical Shell Bioprinting to Produce Uniform Spheroids with Controlled Sizes.","authors":"Kuk Hui Son, Dong-Ha Kim, Seunghye Park, Hyun Jae Kim, Mira Park, Seung-Jin Kim, Sang Jin Lee, Keunsun Ahn, Jin Woo Lee","doi":"10.3390/jfb15110350","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional cell spheroid production methods are largely manual, leading to variations in size and shape that compromise consistency and reliability for use in cell-based therapeutic applications. To enhance spheroid production, a spherical shell bioprinting system was implemented, enabling the high-throughput generation of uniform cell spheroids with precisely controlled sizes. The system encapsulates cells within thin alginate hydrogel shells formed through bioprinting and ion crosslinking reactions. Alginate-calcium ion crosslinking created alginate shells that contained gelatin-based bioinks with embedded cells, facilitating spontaneous cell aggregation within the shells and eliminating the need for plastic wells. By adjusting cell concentrations in the alginate-gelatin bioink, we achieved precise control over spheroid size, maintaining a sphericity above 0.94 and size deviations within ±10 µm. This method has been successfully applied to various cell types including cancer cells, fibroblasts, chondrocytes, and epithelial cells, demonstrating its versatility. This scalable approach enhances the reliability of cell therapy and drug screening, offering a robust platform for future biomedical applications.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 11","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15110350","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional cell spheroid production methods are largely manual, leading to variations in size and shape that compromise consistency and reliability for use in cell-based therapeutic applications. To enhance spheroid production, a spherical shell bioprinting system was implemented, enabling the high-throughput generation of uniform cell spheroids with precisely controlled sizes. The system encapsulates cells within thin alginate hydrogel shells formed through bioprinting and ion crosslinking reactions. Alginate-calcium ion crosslinking created alginate shells that contained gelatin-based bioinks with embedded cells, facilitating spontaneous cell aggregation within the shells and eliminating the need for plastic wells. By adjusting cell concentrations in the alginate-gelatin bioink, we achieved precise control over spheroid size, maintaining a sphericity above 0.94 and size deviations within ±10 µm. This method has been successfully applied to various cell types including cancer cells, fibroblasts, chondrocytes, and epithelial cells, demonstrating its versatility. This scalable approach enhances the reliability of cell therapy and drug screening, offering a robust platform for future biomedical applications.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.