Ting-Ting Xie, Ming-Qiang Wang, Yi Li, Cheng-Yong Su, Dan Zhang, Qing-Song Zhou, Ze-Qing Niu, Feng Yuan, Xiu-Wei Liu, Ke-Ping Ma, Chao-Dong Zhu, Jia-Sheng Hao, Douglas Chesters
{"title":"Blue Vane and Pan Traps Are More Effective for Profiling Multiple Facets of Bee Diversity in Subtropical Forests.","authors":"Ting-Ting Xie, Ming-Qiang Wang, Yi Li, Cheng-Yong Su, Dan Zhang, Qing-Song Zhou, Ze-Qing Niu, Feng Yuan, Xiu-Wei Liu, Ke-Ping Ma, Chao-Dong Zhu, Jia-Sheng Hao, Douglas Chesters","doi":"10.3390/insects15110909","DOIUrl":null,"url":null,"abstract":"<p><p>The choice of trap in entomological surveys affects the composition of captured insects, though previous comparative studies have been limited in the types of composition measured, and the effects of environmental context. We assessed the sampling bias of several traps commonly used in pollinator monitoring: blue, yellow, and white pan traps, and blue vane traps, towards different taxonomic and functional groups and their efficiency in measuring taxonomic, phylogenetic, and functional diversity. Analyses were performed in monoculture and mixed forests to understand the environmental context of trap efficiency. We found that blue pan traps generally outperformed other types in bee capture and exhibited a preference for Halictidae bees. Blue pan traps yielded the highest species richness and phylogenetic diversity, while blue vane traps captured the highest functional richness. Bias differences were frequently detected in mixed forests compared with monoculture forests. We also found the combination of blue vane and pan traps consistently correlated highest with a complete survey among two-method combinations. Based on our findings, we recommend a combination of blue vane and pan traps to obtain a more comprehensive bee collection in an efficient manner. Additionally, it is crucial to consider habitat type when designing bee trapping protocols to ensure an accurate representation of bee communities.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"15 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594821/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects15110909","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The choice of trap in entomological surveys affects the composition of captured insects, though previous comparative studies have been limited in the types of composition measured, and the effects of environmental context. We assessed the sampling bias of several traps commonly used in pollinator monitoring: blue, yellow, and white pan traps, and blue vane traps, towards different taxonomic and functional groups and their efficiency in measuring taxonomic, phylogenetic, and functional diversity. Analyses were performed in monoculture and mixed forests to understand the environmental context of trap efficiency. We found that blue pan traps generally outperformed other types in bee capture and exhibited a preference for Halictidae bees. Blue pan traps yielded the highest species richness and phylogenetic diversity, while blue vane traps captured the highest functional richness. Bias differences were frequently detected in mixed forests compared with monoculture forests. We also found the combination of blue vane and pan traps consistently correlated highest with a complete survey among two-method combinations. Based on our findings, we recommend a combination of blue vane and pan traps to obtain a more comprehensive bee collection in an efficient manner. Additionally, it is crucial to consider habitat type when designing bee trapping protocols to ensure an accurate representation of bee communities.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.