Development and Application of Mucilage and Bioactive Compounds from Cactaceae to Formulate Novel and Sustainable Edible Films and Coatings to Preserve Fruits and Vegetables-A Review.
Viviane Priscila Barros de Medeiros, Kataryne Árabe Rimá de Oliveira, Talita Silveira Queiroga, Evandro Leite de Souza
{"title":"Development and Application of Mucilage and Bioactive Compounds from Cactaceae to Formulate Novel and Sustainable Edible Films and Coatings to Preserve Fruits and Vegetables-A Review.","authors":"Viviane Priscila Barros de Medeiros, Kataryne Árabe Rimá de Oliveira, Talita Silveira Queiroga, Evandro Leite de Souza","doi":"10.3390/foods13223613","DOIUrl":null,"url":null,"abstract":"<p><p>The accelerated ripening and senescence of fruits and vegetables is characterized by various biochemical changes that hinder the maintenance of their postharvest quality. In this context, developing edible films and coatings formulated with natural and biodegradable materials emerges as a sustainable strategy for preserving the quality parameters of these products in replacement of conventional petroleum-based packaging. Recently, plant-based polymers, including mucilage from different cactus species and/or their bioactive compounds, have been investigated to develop edible films and coatings. As the available literature indicates, the <i>Opuntia</i> genus stands out as the most used for mucilage extraction, with the cladode being the most exploited part of the plant. Conventional extraction methods are widely employed to obtain mucilages, which are applied to fruits and vegetables after being combined with plasticizing and cross-linking agents. In general, these films and coatings have proven effective in prolonging the shelf life and maintaining the nutritional, physical, and sensory quality of fruits and vegetables. Given their preservation potential, combining cactus mucilages with bioactive compounds, probiotics, and prebiotics represents an emerging trend in developing functional films and coatings. However, some limitations have been identified, such as the underutilization of different species and parts of the plant, the lack of standardization in extraction methods, and the absence of studies on the effects of the physicochemical properties of mucilages in the formulation and characteristics of films and coatings. Therefore, overcoming these limitations is essential for developing edible films and coatings with enhanced techno-functional properties and greater commercial viability.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"13 22","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13223613","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The accelerated ripening and senescence of fruits and vegetables is characterized by various biochemical changes that hinder the maintenance of their postharvest quality. In this context, developing edible films and coatings formulated with natural and biodegradable materials emerges as a sustainable strategy for preserving the quality parameters of these products in replacement of conventional petroleum-based packaging. Recently, plant-based polymers, including mucilage from different cactus species and/or their bioactive compounds, have been investigated to develop edible films and coatings. As the available literature indicates, the Opuntia genus stands out as the most used for mucilage extraction, with the cladode being the most exploited part of the plant. Conventional extraction methods are widely employed to obtain mucilages, which are applied to fruits and vegetables after being combined with plasticizing and cross-linking agents. In general, these films and coatings have proven effective in prolonging the shelf life and maintaining the nutritional, physical, and sensory quality of fruits and vegetables. Given their preservation potential, combining cactus mucilages with bioactive compounds, probiotics, and prebiotics represents an emerging trend in developing functional films and coatings. However, some limitations have been identified, such as the underutilization of different species and parts of the plant, the lack of standardization in extraction methods, and the absence of studies on the effects of the physicochemical properties of mucilages in the formulation and characteristics of films and coatings. Therefore, overcoming these limitations is essential for developing edible films and coatings with enhanced techno-functional properties and greater commercial viability.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds