Dinara N. Sagatova, Nursultan E. Sagatov, Pavel N. Gavryushkin
{"title":"Searching for Stable Beryllium Carbonates in the BeO–CO2 System","authors":"Dinara N. Sagatova, Nursultan E. Sagatov, Pavel N. Gavryushkin","doi":"10.1021/acs.jpcc.4c06395","DOIUrl":null,"url":null,"abstract":"In this work, the BeO–CO<sub>2</sub> system was investigated in the pressure range from 0 to 50 GPa based on first-principles calculations and modern crystal structure prediction approaches. As a result, one stable compound with intermediate stoichiometry BeCO<sub>3</sub> was predicted at all considered pressure ranges, while a near-ground-state compound Be<sub>2</sub>CO<sub>4</sub> decomposed into two neighboring compounds under compression. For BeCO<sub>3</sub>, the structure <i>Ama</i>2, two enantiomorphic phases <i>P</i>3<sub>1</sub>21 and <i>P</i>3<sub>2</sub>21, and the modification <i>R</i>3̅<i>c</i> were predicted to be stable. According to the obtained results, the following sequence of polymorphic transitions : <i></i><span style=\"color: inherit;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mrow><mi>A</mi><mi>m</mi><mi>a</mi><mstyle mathvariant=\"normal\"><mn>2</mn></mstyle></mrow></mstyle><mo>&#x2192;</mo><mi>P</mi><msub><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msub><mn>21</mn><mo>&#x2192;</mo><mi>R</mi><mover><mn>3</mn><mo accent=\"true\" stretchy=\"false\">&#xAF;</mo></mover><mi>c</mi></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span overflow=\"scroll\" style=\"width: 10.969em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 9.946em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.537em, 1009.95em, 2.901em, -999.997em); top: -2.554em; left: 0em;\"><span><span><span><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝐴</span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑚</span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑎</span><span><span><span style=\"font-family: STIXMathJax_Main;\">2</span></span></span></span></span></span><span style=\"font-family: STIXMathJax_Main; padding-left: 0.344em;\">→</span><span style=\"font-family: STIXMathJax_Normal-italic; padding-left: 0.344em;\">𝑃<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.116em;\"></span></span><span><span style=\"display: inline-block; position: relative; width: 0.912em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.46em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Main;\">3</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.514em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">1</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">21</span><span style=\"font-family: STIXMathJax_Main; padding-left: 0.344em;\">→</span><span style=\"font-family: STIXMathJax_Normal-italic; padding-left: 0.344em;\">𝑅</span><span><span style=\"display: inline-block; position: relative; width: 0.514em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.46em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">3</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.185em, 1000.34em, 3.582em, -999.997em); top: -4.259em; left: 0.06em;\"><span style=\"font-family: STIXMathJax_Main;\">¯</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑐</span></span><span style=\"display: inline-block; width: 0px; height: 2.56em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.253em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"italic\"><mrow><mi>A</mi><mi>m</mi><mi>a</mi><mstyle mathvariant=\"normal\"><mn>2</mn></mstyle></mrow></mstyle><mo>→</mo><mi>P</mi><msub><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msub><mn>21</mn><mo>→</mo><mi>R</mi><mover><mn>3</mn><mo accent=\"true\" stretchy=\"false\">¯</mo></mover><mi>c</mi></math></span></span><script type=\"math/mml\"><math display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mrow><mi>A</mi><mi>m</mi><mi>a</mi><mstyle mathvariant=\"normal\"><mn>2</mn></mstyle></mrow></mstyle><mo>→</mo><mi>P</mi><msub><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msub><mn>21</mn><mo>→</mo><mi>R</mi><mover><mn>3</mn><mo accent=\"true\" stretchy=\"false\">¯</mo></mover><mi>c</mi></math></script> at 4.5 and 36 GPa at low temperatures, respectively. The high-pressure modification <i>R</i>3̅<i>c</i> retains its stability at least up to 50 GPa without decomposition or polymorphic transition. The <i>Ama</i>2 and <i>P</i>3<sub>1</sub>21 modifications are characterized by the presence of chains of [BeO<sub>4</sub>] tetrahedra shared with [CO<sub>3</sub>] triangles, whereas the high-pressure modification <i>R</i>3̅<i>c</i> belongs to the calcite structural type, and the [BeO<sub>4</sub>] tetrahedra are replaced by [BeO<sub>6</sub>] octahedra. Beryllium carbonate in the <i>Ama</i>2 and <i>P</i>3<sub>1</sub>21 structures can be recovered at atmospheric pressure. In addition, the electronic density of state and band structures of all predicted modifications of BeCO<sub>3</sub> were calculated.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06395","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the BeO–CO2 system was investigated in the pressure range from 0 to 50 GPa based on first-principles calculations and modern crystal structure prediction approaches. As a result, one stable compound with intermediate stoichiometry BeCO3 was predicted at all considered pressure ranges, while a near-ground-state compound Be2CO4 decomposed into two neighboring compounds under compression. For BeCO3, the structure Ama2, two enantiomorphic phases P3121 and P3221, and the modification R3̅c were predicted to be stable. According to the obtained results, the following sequence of polymorphic transitions : 𝐴𝑚𝑎2→𝑃3121→𝑅3¯𝑐 at 4.5 and 36 GPa at low temperatures, respectively. The high-pressure modification R3̅c retains its stability at least up to 50 GPa without decomposition or polymorphic transition. The Ama2 and P3121 modifications are characterized by the presence of chains of [BeO4] tetrahedra shared with [CO3] triangles, whereas the high-pressure modification R3̅c belongs to the calcite structural type, and the [BeO4] tetrahedra are replaced by [BeO6] octahedra. Beryllium carbonate in the Ama2 and P3121 structures can be recovered at atmospheric pressure. In addition, the electronic density of state and band structures of all predicted modifications of BeCO3 were calculated.
期刊介绍:
The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.