Searching for Stable Beryllium Carbonates in the BeO–CO2 System

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Dinara N. Sagatova, Nursultan E. Sagatov, Pavel N. Gavryushkin
{"title":"Searching for Stable Beryllium Carbonates in the BeO–CO2 System","authors":"Dinara N. Sagatova, Nursultan E. Sagatov, Pavel N. Gavryushkin","doi":"10.1021/acs.jpcc.4c06395","DOIUrl":null,"url":null,"abstract":"In this work, the BeO–CO<sub>2</sub> system was investigated in the pressure range from 0 to 50 GPa based on first-principles calculations and modern crystal structure prediction approaches. As a result, one stable compound with intermediate stoichiometry BeCO<sub>3</sub> was predicted at all considered pressure ranges, while a near-ground-state compound Be<sub>2</sub>CO<sub>4</sub> decomposed into two neighboring compounds under compression. For BeCO<sub>3</sub>, the structure <i>Ama</i>2, two enantiomorphic phases <i>P</i>3<sub>1</sub>21 and <i>P</i>3<sub>2</sub>21, and the modification <i>R</i>3̅<i>c</i> were predicted to be stable. According to the obtained results, the following sequence of polymorphic transitions : <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mstyle mathvariant=\"italic\"&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mstyle mathvariant=\"normal\"&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;mo&gt;&amp;#x2192;&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mn&gt;21&lt;/mn&gt;&lt;mo&gt;&amp;#x2192;&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mover&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo accent=\"true\" stretchy=\"false\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span overflow=\"scroll\" style=\"width: 10.969em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 9.946em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.537em, 1009.95em, 2.901em, -999.997em); top: -2.554em; left: 0em;\"><span><span><span><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝐴</span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑚</span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑎</span><span><span><span style=\"font-family: STIXMathJax_Main;\">2</span></span></span></span></span></span><span style=\"font-family: STIXMathJax_Main; padding-left: 0.344em;\">→</span><span style=\"font-family: STIXMathJax_Normal-italic; padding-left: 0.344em;\">𝑃<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.116em;\"></span></span><span><span style=\"display: inline-block; position: relative; width: 0.912em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.46em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Main;\">3</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.514em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">1</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">21</span><span style=\"font-family: STIXMathJax_Main; padding-left: 0.344em;\">→</span><span style=\"font-family: STIXMathJax_Normal-italic; padding-left: 0.344em;\">𝑅</span><span><span style=\"display: inline-block; position: relative; width: 0.514em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.46em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">3</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.185em, 1000.34em, 3.582em, -999.997em); top: -4.259em; left: 0.06em;\"><span style=\"font-family: STIXMathJax_Main;\">¯</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑐</span></span><span style=\"display: inline-block; width: 0px; height: 2.56em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.253em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"italic\"><mrow><mi>A</mi><mi>m</mi><mi>a</mi><mstyle mathvariant=\"normal\"><mn>2</mn></mstyle></mrow></mstyle><mo>→</mo><mi>P</mi><msub><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msub><mn>21</mn><mo>→</mo><mi>R</mi><mover><mn>3</mn><mo accent=\"true\" stretchy=\"false\">¯</mo></mover><mi>c</mi></math></span></span><script type=\"math/mml\"><math display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"italic\"><mrow><mi>A</mi><mi>m</mi><mi>a</mi><mstyle mathvariant=\"normal\"><mn>2</mn></mstyle></mrow></mstyle><mo>→</mo><mi>P</mi><msub><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msub><mn>21</mn><mo>→</mo><mi>R</mi><mover><mn>3</mn><mo accent=\"true\" stretchy=\"false\">¯</mo></mover><mi>c</mi></math></script> at 4.5 and 36 GPa at low temperatures, respectively. The high-pressure modification <i>R</i>3̅<i>c</i> retains its stability at least up to 50 GPa without decomposition or polymorphic transition. The <i>Ama</i>2 and <i>P</i>3<sub>1</sub>21 modifications are characterized by the presence of chains of [BeO<sub>4</sub>] tetrahedra shared with [CO<sub>3</sub>] triangles, whereas the high-pressure modification <i>R</i>3̅<i>c</i> belongs to the calcite structural type, and the [BeO<sub>4</sub>] tetrahedra are replaced by [BeO<sub>6</sub>] octahedra. Beryllium carbonate in the <i>Ama</i>2 and <i>P</i>3<sub>1</sub>21 structures can be recovered at atmospheric pressure. In addition, the electronic density of state and band structures of all predicted modifications of BeCO<sub>3</sub> were calculated.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06395","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the BeO–CO2 system was investigated in the pressure range from 0 to 50 GPa based on first-principles calculations and modern crystal structure prediction approaches. As a result, one stable compound with intermediate stoichiometry BeCO3 was predicted at all considered pressure ranges, while a near-ground-state compound Be2CO4 decomposed into two neighboring compounds under compression. For BeCO3, the structure Ama2, two enantiomorphic phases P3121 and P3221, and the modification Rc were predicted to be stable. According to the obtained results, the following sequence of polymorphic transitions : Ama2P3121R3¯c at 4.5 and 36 GPa at low temperatures, respectively. The high-pressure modification Rc retains its stability at least up to 50 GPa without decomposition or polymorphic transition. The Ama2 and P3121 modifications are characterized by the presence of chains of [BeO4] tetrahedra shared with [CO3] triangles, whereas the high-pressure modification Rc belongs to the calcite structural type, and the [BeO4] tetrahedra are replaced by [BeO6] octahedra. Beryllium carbonate in the Ama2 and P3121 structures can be recovered at atmospheric pressure. In addition, the electronic density of state and band structures of all predicted modifications of BeCO3 were calculated.

Abstract Image

在 BeO-CO2 系统中寻找稳定的铍碳酸盐
在这项工作中,基于第一原理计算和现代晶体结构预测方法,研究了 BeO-CO2 系统在 0 至 50 GPa 压力范围内的情况。结果,在所有考虑的压力范围内,都预测出了一种具有中间化学计量的稳定化合物 BeCO3,而一种近基态化合物 Be2CO4 在压缩条件下分解成了两种相邻的化合物。对于 BeCO3,预测其结构 Ama2、两个对映异构相 P3121 和 P3221 以及修饰 R3̅c 是稳定的。根据所获得的结果,在 4.5 和 36 GPa 的低温条件下,多态转变序列如下:𝐴𝑚𝑎2→𝑃3121→𝑅3¯𝑐Ama2→P3121→R3¯cAma2→P3121→R3¯c。高压改性 R3̅c 至少在 50 GPa 以下仍保持稳定,没有发生分解或多晶型转变。Ama2 和 P3121 改性的特点是存在[BeO4]四面体与[CO3]三角形共用的链,而高压改性 R3̅c 属于方解石结构类型,[BeO4]四面体被[BeO6]八面体取代。Ama2 和 P3121 结构的碳酸铍可以在常压下回收。此外,还计算了所有预测的 BeCO3 变体的电子态密度和能带结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信