Heme oxygenase 1 inhibitor discovery and formulation into nanostructured lipid carriers as potent and selective treatment against triple negative metastatic breast cancer
{"title":"Heme oxygenase 1 inhibitor discovery and formulation into nanostructured lipid carriers as potent and selective treatment against triple negative metastatic breast cancer","authors":"Nicola Filippo Virzì , Carmen Alvarez-Lorenzo , Angel Concheiro , Valeria Consoli , Loredana Salerno , Luca Vanella , Valeria Pittalà , Patricia Diaz-Rodriguez","doi":"10.1016/j.ijpharm.2024.124997","DOIUrl":null,"url":null,"abstract":"<div><div>Heme oxygenase-1 (HO-1) has been identified as a potential new target in anticancer therapy, being overexpressed in different tumors and crucial for cell proliferation. Advances in the development of specific HO-1 inhibitors should support the understanding of controlling HO-1 activity as antitumoral strategies, opening the path for future therapeutic applications. In the present study, small series of new HO-1 inhibitors were synthesized by joining a butylimidazolic pharmacophore together with a hydrophobic moiety spaced by a 2-oxybenzamide central linker. The most active and selective HO-1 inhibitor, VP 21–04, 2-(4-(1<em>H</em>-imidazol-1-yl)butoxy)-<u>N</u>-benzyl-5-iodobenzamide (7b) was identified. This ligand showed strong cytotoxic activity against melanoma and breast cancer cell lines. Encapsulation of VP 21–04 in nanostructured lipid carriers (NLC 21–04) was performed to exploit its therapeutic potential by passive-targeting delivery ameliorating water-solubility and toxicity. Interestingly, NLC 21–04 showed a marked antiproliferative effect in both cancer cell lines, and an improved safety profile with a wider therapeutic window when compared to the free drug. Finally, NLC 21–04 showed a marked tumor growth reduction while being safe in an <em>in ovo</em> tumor model, highlighting the therapeutic potential of the developed nanoparticles against triple negative metastatic breast cancer.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"668 ","pages":"Article 124997"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324012316","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Heme oxygenase-1 (HO-1) has been identified as a potential new target in anticancer therapy, being overexpressed in different tumors and crucial for cell proliferation. Advances in the development of specific HO-1 inhibitors should support the understanding of controlling HO-1 activity as antitumoral strategies, opening the path for future therapeutic applications. In the present study, small series of new HO-1 inhibitors were synthesized by joining a butylimidazolic pharmacophore together with a hydrophobic moiety spaced by a 2-oxybenzamide central linker. The most active and selective HO-1 inhibitor, VP 21–04, 2-(4-(1H-imidazol-1-yl)butoxy)-N-benzyl-5-iodobenzamide (7b) was identified. This ligand showed strong cytotoxic activity against melanoma and breast cancer cell lines. Encapsulation of VP 21–04 in nanostructured lipid carriers (NLC 21–04) was performed to exploit its therapeutic potential by passive-targeting delivery ameliorating water-solubility and toxicity. Interestingly, NLC 21–04 showed a marked antiproliferative effect in both cancer cell lines, and an improved safety profile with a wider therapeutic window when compared to the free drug. Finally, NLC 21–04 showed a marked tumor growth reduction while being safe in an in ovo tumor model, highlighting the therapeutic potential of the developed nanoparticles against triple negative metastatic breast cancer.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.