{"title":"Advanced Thermoactive Nanomaterials for Thermomedical Tissue Regeneration: Opportunities and Challenges.","authors":"Ting Li, Long Zhang, Xiaoyan Qu, Bo Lei","doi":"10.1002/smtd.202400510","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomaterials usually possess remarkable properties, including excellent biocompatibility, unique physical and chemical characteristics, and bionic attributes, which make them highly promising for applications in tissue regeneration. Thermal therapy has emerged as a versatile approach for wound healing, nerve repair, bone regeneration, tumor therapy, and antibacterial tissue regeneration. By combining nanomaterials with thermal therapy, multifunctional nanomaterials with thermogenic effects and tissue regeneration capabilities can be engineered to achieve enhanced therapeutic outcomes. This study provides a comprehensive review of the effects of thermal stimulation on cellular and tissue regeneration. Furthermore, it highlights the applications of photothermal, magnetothermal, and electrothermal nanomaterials, and thermally responsive drug delivery systems in tissue engineering. In Addition, the bioactivities and biocompatibilities of several representative thermal nanomaterials are discussed. Finally, the challenges facing thermal nanomaterials are outlined, and future prospects in the field are presented with the aim of offering new opportunities and avenues for the utilization of thermal nanomaterials in tissue regeneration.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400510"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400510","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanomaterials usually possess remarkable properties, including excellent biocompatibility, unique physical and chemical characteristics, and bionic attributes, which make them highly promising for applications in tissue regeneration. Thermal therapy has emerged as a versatile approach for wound healing, nerve repair, bone regeneration, tumor therapy, and antibacterial tissue regeneration. By combining nanomaterials with thermal therapy, multifunctional nanomaterials with thermogenic effects and tissue regeneration capabilities can be engineered to achieve enhanced therapeutic outcomes. This study provides a comprehensive review of the effects of thermal stimulation on cellular and tissue regeneration. Furthermore, it highlights the applications of photothermal, magnetothermal, and electrothermal nanomaterials, and thermally responsive drug delivery systems in tissue engineering. In Addition, the bioactivities and biocompatibilities of several representative thermal nanomaterials are discussed. Finally, the challenges facing thermal nanomaterials are outlined, and future prospects in the field are presented with the aim of offering new opportunities and avenues for the utilization of thermal nanomaterials in tissue regeneration.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.