Reliable Computation by Large-Alphabet Formulas in the Presence of Noise

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Andrew K. Tan;Matthew H. Ho;Isaac L. Chuang
{"title":"Reliable Computation by Large-Alphabet Formulas in the Presence of Noise","authors":"Andrew K. Tan;Matthew H. Ho;Isaac L. Chuang","doi":"10.1109/TIT.2024.3486278","DOIUrl":null,"url":null,"abstract":"We present two new positive results for reliable computation using formulas over physical alphabets of size \n<inline-formula> <tex-math>$q \\gt 2$ </tex-math></inline-formula>\n. First, we show that for logical alphabets of size \n<inline-formula> <tex-math>$\\ell = q$ </tex-math></inline-formula>\n the threshold for denoising using gates subject to q-ary symmetric noise with error probability \n<inline-formula> <tex-math>$\\varepsilon $ </tex-math></inline-formula>\n is strictly larger than that for Boolean computation, and we show that reliable computation is possible as long as signals remain distinguishable, i.e. \n<inline-formula> <tex-math>$\\epsilon \\lt (q - 1) / q$ </tex-math></inline-formula>\n, in the limit of large fan-in \n<inline-formula> <tex-math>$k \\rightarrow \\infty $ </tex-math></inline-formula>\n. We also determine the point at which generalized majority gates with bounded fan-in fail, and show in particular that reliable computation is possible for \n<inline-formula> <tex-math>$\\epsilon \\lt (q - 1) / (q (q + 1))$ </tex-math></inline-formula>\n in the case of q prime and fan-in \n<inline-formula> <tex-math>$k = 3$ </tex-math></inline-formula>\n. Secondly, we provide an example where \n<inline-formula> <tex-math>$\\ell \\lt q$ </tex-math></inline-formula>\n, showing that reliable Boolean computation, \n<inline-formula> <tex-math>$\\ell = 2$ </tex-math></inline-formula>\n, can be performed using 2-input ternary, \n<inline-formula> <tex-math>$q = 3$ </tex-math></inline-formula>\n, logic gates subject to symmetric ternary noise of strength \n<inline-formula> <tex-math>$\\varepsilon \\lt 1/6$ </tex-math></inline-formula>\n by using the additional alphabet element for error signaling.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 12","pages":"9152-9164"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10739963/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We present two new positive results for reliable computation using formulas over physical alphabets of size $q \gt 2$ . First, we show that for logical alphabets of size $\ell = q$ the threshold for denoising using gates subject to q-ary symmetric noise with error probability $\varepsilon $ is strictly larger than that for Boolean computation, and we show that reliable computation is possible as long as signals remain distinguishable, i.e. $\epsilon \lt (q - 1) / q$ , in the limit of large fan-in $k \rightarrow \infty $ . We also determine the point at which generalized majority gates with bounded fan-in fail, and show in particular that reliable computation is possible for $\epsilon \lt (q - 1) / (q (q + 1))$ in the case of q prime and fan-in $k = 3$ . Secondly, we provide an example where $\ell \lt q$ , showing that reliable Boolean computation, $\ell = 2$ , can be performed using 2-input ternary, $q = 3$ , logic gates subject to symmetric ternary noise of strength $\varepsilon \lt 1/6$ by using the additional alphabet element for error signaling.
在有噪声的情况下通过大字母公式进行可靠计算
对于使用大小为 $q \gt 2$ 的物理字母表上的公式进行的可靠计算,我们提出了两个新的积极结果。首先,我们证明了对于大小为 $\ell = q$ 的逻辑字母表,使用门进行去噪的阈值受到错误概率为 $\varepsilon $ 的 qary 对称噪声的影响,严格大于布尔计算的阈值。我们还确定了具有有界扇入的广义多数门的失效点,并特别证明了在 q 素数和扇入 $k = 3$ 的情况下,可靠计算在 $\epsilon \lt (q - 1) / (q (q + 1))$ 时是可能的。其次,我们提供了一个$ell \lt q$的例子,表明在强度为$\varepsilon \lt 1/6$的对称三元噪声下,通过使用额外的字母元素进行错误信号传递,可以使用2输入三元($q = 3$)逻辑门进行可靠的布尔计算($\ell = 2$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信