Mingwei Qin , Imran Mahmood Khan , Ning Ding , Shuo Qi , Xiaoze Dong , Yifei He , Yin Zhang , Zhouping Wang
{"title":"G-quadruplex fluorescent and lateral flow colorimetric aptasensor for the detection of capsaicin in illicit cooking oil","authors":"Mingwei Qin , Imran Mahmood Khan , Ning Ding , Shuo Qi , Xiaoze Dong , Yifei He , Yin Zhang , Zhouping Wang","doi":"10.1016/j.snb.2024.137003","DOIUrl":null,"url":null,"abstract":"<div><div>The safety of cooking oil is a major global concern and capsaicin (CAP) serves as a crucial marker for assessing its quality. To address this issue, we have devised an innovative biosensor using a truncated aptamer, Cap-1–2, as the foundation for a dual-mode aptasensor. The aptasensor employs a combination of Mg<sup>2+</sup>-dependent DNAzyme (MNAzyme) cleavage and hybridization chain reaction (HCR) to achieve highly sensitive CAP detection. Notably, the fluorescence signal originates from the inherent fluorescence of thioflavin T (ThT) embedded in a G-quadruplex (G4) structure, enabling the detection of CAP in high-throughput oil samples. Additionally, the biosensor employed the MNAzyme to cleave biotinylated DNA (S1-Biotin), which is subsequently ligated to functionalized gold nanoparticles (AuNPs-Poly A-cDNA), generating outstanding colorimetric signals on lateral flow test strips for immediate point-of-care testing (POCT). The linear detection ranges of the established fluorescence and colorimetric aptasensor were 0.15–80 ng mL<sup>−1</sup> and 0.2–100 ng mL<sup>−1</sup>, respectively, and the limits of detection (LOD) were 0.054 ng mL<sup>−1</sup> and 0.137 ng mL<sup>−1</sup>, respectively. These results demonstrate the practicality of the aptasensor for detecting CAP in real-world samples. Moreover, the aptasensor surpasses traditional biosensors in terms of high-throughput, portability, and sensitivity, making it highly promising for rapid detection in the food industry.</div></div>","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"425 ","pages":"Article 137003"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925400524017337","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The safety of cooking oil is a major global concern and capsaicin (CAP) serves as a crucial marker for assessing its quality. To address this issue, we have devised an innovative biosensor using a truncated aptamer, Cap-1–2, as the foundation for a dual-mode aptasensor. The aptasensor employs a combination of Mg2+-dependent DNAzyme (MNAzyme) cleavage and hybridization chain reaction (HCR) to achieve highly sensitive CAP detection. Notably, the fluorescence signal originates from the inherent fluorescence of thioflavin T (ThT) embedded in a G-quadruplex (G4) structure, enabling the detection of CAP in high-throughput oil samples. Additionally, the biosensor employed the MNAzyme to cleave biotinylated DNA (S1-Biotin), which is subsequently ligated to functionalized gold nanoparticles (AuNPs-Poly A-cDNA), generating outstanding colorimetric signals on lateral flow test strips for immediate point-of-care testing (POCT). The linear detection ranges of the established fluorescence and colorimetric aptasensor were 0.15–80 ng mL−1 and 0.2–100 ng mL−1, respectively, and the limits of detection (LOD) were 0.054 ng mL−1 and 0.137 ng mL−1, respectively. These results demonstrate the practicality of the aptasensor for detecting CAP in real-world samples. Moreover, the aptasensor surpasses traditional biosensors in terms of high-throughput, portability, and sensitivity, making it highly promising for rapid detection in the food industry.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.