A temperature-insensitive refractive index sensor based on in-line Mach–Zehnder interferometer with micro spindle structures and photonic crystal fibers
IF 2.6 3区 计算机科学Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"A temperature-insensitive refractive index sensor based on in-line Mach–Zehnder interferometer with micro spindle structures and photonic crystal fibers","authors":"Jian Geng, Naoto Kishi","doi":"10.1016/j.yofte.2024.104039","DOIUrl":null,"url":null,"abstract":"<div><div>A high-sensitivity refractive index (RI) sensor is proposed and designed, which is an in-line Mach–Zehnder interferometer (IMZI) with a photonic crystal fiber (PCF) and multilevel micro spindle structures fabricated by the arc-discharging and tapering method. To improve the sensitivity, a tapered multimode fiber (MMF) is inserted into the PCF. The performance of RI and temperature detection has been analyzed and discussed. The maximum RI sensitivity of −2958.875 nm/RIU is achieved by detecting the NaCl solution. In addition, the maximum temperature sensitivity is 6.4 pm/<span><math><mrow><msup><mrow></mrow><mrow><mtext>o</mtext></mrow></msup><mtext>C</mtext></mrow></math></span> in the range of 25 <span><math><mrow><msup><mrow></mrow><mrow><mtext>o</mtext></mrow></msup><mtext>C</mtext></mrow></math></span>–65 <span><math><mrow><msup><mrow></mrow><mrow><mtext>o</mtext></mrow></msup><mtext>C</mtext></mrow></math></span>, and the maximum measurement error changes caused by temperature is −0.0170‰/<span><math><mrow><msup><mrow></mrow><mrow><mtext>o</mtext></mrow></msup><mtext>C</mtext></mrow></math></span>. It shows that the sensor is very sensitive to RI yet insensitive to temperature.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"89 ","pages":"Article 104039"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024003845","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A high-sensitivity refractive index (RI) sensor is proposed and designed, which is an in-line Mach–Zehnder interferometer (IMZI) with a photonic crystal fiber (PCF) and multilevel micro spindle structures fabricated by the arc-discharging and tapering method. To improve the sensitivity, a tapered multimode fiber (MMF) is inserted into the PCF. The performance of RI and temperature detection has been analyzed and discussed. The maximum RI sensitivity of −2958.875 nm/RIU is achieved by detecting the NaCl solution. In addition, the maximum temperature sensitivity is 6.4 pm/ in the range of 25 –65 , and the maximum measurement error changes caused by temperature is −0.0170‰/. It shows that the sensor is very sensitive to RI yet insensitive to temperature.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.