Overcoming poor data quality: Optimizing validation of precedence relation data

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Benedikt Finnah, Jochen Gönsch, Alena Otto
{"title":"Overcoming poor data quality: Optimizing validation of precedence relation data","authors":"Benedikt Finnah, Jochen Gönsch, Alena Otto","doi":"10.1016/j.ejor.2024.11.009","DOIUrl":null,"url":null,"abstract":"Insufficient data quality prevents data usage by decision support systems (DSS) in many areas of business. This is the case for data on precedence relations between tasks, which is relevant, for instance, in project scheduling and assembly line balancing. Inaccurate data on unnecessary precedence relations cannot be used, otherwise the recommendations of DSS may turn infeasible. So, unnecessary relations must be satisfied, diminishing the baseline problem’s solution space and the business result. Experts can validate the data, but their time is limited.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"6 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2024.11.009","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Insufficient data quality prevents data usage by decision support systems (DSS) in many areas of business. This is the case for data on precedence relations between tasks, which is relevant, for instance, in project scheduling and assembly line balancing. Inaccurate data on unnecessary precedence relations cannot be used, otherwise the recommendations of DSS may turn infeasible. So, unnecessary relations must be satisfied, diminishing the baseline problem’s solution space and the business result. Experts can validate the data, but their time is limited.
克服数据质量差的问题:优化先例关系数据的验证
在许多业务领域,数据质量不高会妨碍决策支持系统(DSS)使用数据。例如,在项目调度和流水线平衡中,任务之间的优先关系数据就属于这种情况。不能使用不准确的不必要优先关系数据,否则决策支持系统的建议可能会变得不可行。因此,必须满足不必要的关系,从而缩小基线问题的求解空间和业务结果。专家可以验证数据,但他们的时间有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信