Non-Fourier thermal spike effect on nanocrystalline Cu phase engineering

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jiajian Guan , Prasanth Gupta , Zhen He , Zulfitri Rosli , John Kennedy , Wei Gao , Ziyun Wang
{"title":"Non-Fourier thermal spike effect on nanocrystalline Cu phase engineering","authors":"Jiajian Guan ,&nbsp;Prasanth Gupta ,&nbsp;Zhen He ,&nbsp;Zulfitri Rosli ,&nbsp;John Kennedy ,&nbsp;Wei Gao ,&nbsp;Ziyun Wang","doi":"10.1016/j.apsusc.2024.161910","DOIUrl":null,"url":null,"abstract":"<div><div>The thermal spike effect dominates rapid heating and quenching at the nanoscale in ion beam assisted materials surface phase engineering. This phenomenon often leads to the formation of metastable nanocrystalline phases in the resulting micro-/nanostructures. However, such a non-equilibrium process cannot be accurately described by the conventional Fourier thermal spike model. In this study, a non-Fourier model is proposed to elucidate the dynamics of heat diffusion in sub-keV Cu ion beam sputter deposition. The effects of beam density and energy on the non-equilibrium thermal and stress fields are quantitatively investigated. The influence of high stress field on nanocrystalline Cu phase content is also studied. It is found that the energetic Cu ion beams produce a rapidly oscillating stress field with a maximum of ∼ 10 GPa within 50 ps, which significantly constrains the growth of nanocrystalline Cu phase at a threshold of ∼ 4 GPa. This understanding provides new insights into the formation of metastable nanocrystalline phases in the fabrication and modification of surface micro-/nanostructures using ion beam assisted techniques.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"684 ","pages":"Article 161910"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433224026266","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal spike effect dominates rapid heating and quenching at the nanoscale in ion beam assisted materials surface phase engineering. This phenomenon often leads to the formation of metastable nanocrystalline phases in the resulting micro-/nanostructures. However, such a non-equilibrium process cannot be accurately described by the conventional Fourier thermal spike model. In this study, a non-Fourier model is proposed to elucidate the dynamics of heat diffusion in sub-keV Cu ion beam sputter deposition. The effects of beam density and energy on the non-equilibrium thermal and stress fields are quantitatively investigated. The influence of high stress field on nanocrystalline Cu phase content is also studied. It is found that the energetic Cu ion beams produce a rapidly oscillating stress field with a maximum of ∼ 10 GPa within 50 ps, which significantly constrains the growth of nanocrystalline Cu phase at a threshold of ∼ 4 GPa. This understanding provides new insights into the formation of metastable nanocrystalline phases in the fabrication and modification of surface micro-/nanostructures using ion beam assisted techniques.

Abstract Image

Abstract Image

纳米晶铜相工程中的非傅里叶热尖峰效应
在离子束辅助材料表面相工程中,热尖峰效应主导着纳米尺度的快速加热和淬火。这种现象通常会导致在由此产生的微/纳米结构中形成可转移的纳米晶相。然而,传统的傅立叶热尖峰模型无法准确描述这种非平衡过程。本研究提出了一种非傅里叶模型,以阐明亚千伏铜离子束溅射沉积中的热扩散动力学。定量研究了束流密度和能量对非平衡热场和应力场的影响。此外,还研究了高应力场对纳米晶铜相含量的影响。研究发现,高能铜离子束会在 50 ps 内产生快速振荡的应力场,其最大值可达 ∼ 10 GPa,这极大地限制了纳米晶铜相的生长,其阈值为 ∼ 4 GPa。这一认识为利用离子束辅助技术制造和改性表面微/纳米结构时形成可转移纳米晶相提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信