Ni Vacancy and the Se/S Ratio Regulate the p‐Band Center of Hollow NiSxSe2‐x/Phase Junction CdS to Achieve High Efficiency and Broad‐Spectrum Photocatalytic Performance

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-24 DOI:10.1002/smll.202408057
Ning Li, Yanping Qiu, Linping Li, Jiatong Zhang, Yangqin Gao, Lei Ge
{"title":"Ni Vacancy and the Se/S Ratio Regulate the p‐Band Center of Hollow NiSxSe2‐x/Phase Junction CdS to Achieve High Efficiency and Broad‐Spectrum Photocatalytic Performance","authors":"Ning Li, Yanping Qiu, Linping Li, Jiatong Zhang, Yangqin Gao, Lei Ge","doi":"10.1002/smll.202408057","DOIUrl":null,"url":null,"abstract":"Rational design of defect engineering and interfacial built‐in electric fields of photocatalysts is imperative for renewable energy conversion. Herein, a multi‐strategy involving the introduction of Ni vacancies, the adjustment of the Se/S ratio, and the construction of dual junctions are employed to simultaneously realize NiS<jats:sub>x</jats:sub>Se<jats:sub>2‐x</jats:sub>/phase junction CdS (HCC) an excellent photocatalytic activity and broad light absorption. With the help of V<jats:sub>Ni</jats:sub> and the regulation of S/Se, the local electrons are redistributed to occupy more antibonding orbitals and adjust the p‐band center, thus optimizing the H<jats:sup>*</jats:sup> adsorption energy of the catalyst to accelerate the photocatalytic reaction kinetics. Meanwhile, the synergistic effects of phase junction and heterojunction formations generate dual built‐in electric fields (BIEF), which further amplify the stepwise separation and migration of photogenerated carriers. Notably, V<jats:sub>Ni</jats:sub>‐NiSSe/HCC achieves an optimal H<jats:sub>2</jats:sub> evolution rate of 11.43 mmol·g<jats:sup>−1</jats:sup>·h<jats:sup>−1</jats:sup> under visible light irradiation with the apparent quantum yield (AQY) at 15.3% at 420 nm, which is 53 times and 26.6 times higher than H‐CdS and HCC, respectively. Additionally, it also exhibits a hydrogen evolution rate of 147 µmol·g<jats:sup>−1</jats:sup>·h<jats:sup>−1</jats:sup> under near‐infrared (NIR) light with λ ≥780 nm. This work provides new insight into designing robust photocatalysts by regulating the electronic states and energy states.","PeriodicalId":228,"journal":{"name":"Small","volume":"255 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408057","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rational design of defect engineering and interfacial built‐in electric fields of photocatalysts is imperative for renewable energy conversion. Herein, a multi‐strategy involving the introduction of Ni vacancies, the adjustment of the Se/S ratio, and the construction of dual junctions are employed to simultaneously realize NiSxSe2‐x/phase junction CdS (HCC) an excellent photocatalytic activity and broad light absorption. With the help of VNi and the regulation of S/Se, the local electrons are redistributed to occupy more antibonding orbitals and adjust the p‐band center, thus optimizing the H* adsorption energy of the catalyst to accelerate the photocatalytic reaction kinetics. Meanwhile, the synergistic effects of phase junction and heterojunction formations generate dual built‐in electric fields (BIEF), which further amplify the stepwise separation and migration of photogenerated carriers. Notably, VNi‐NiSSe/HCC achieves an optimal H2 evolution rate of 11.43 mmol·g−1·h−1 under visible light irradiation with the apparent quantum yield (AQY) at 15.3% at 420 nm, which is 53 times and 26.6 times higher than H‐CdS and HCC, respectively. Additionally, it also exhibits a hydrogen evolution rate of 147 µmol·g−1·h−1 under near‐infrared (NIR) light with λ ≥780 nm. This work provides new insight into designing robust photocatalysts by regulating the electronic states and energy states.

Abstract Image

镍空位和Se/S比调节中空NiSxSe2-x/相结CdS的p带中心,实现高效率和广谱光催化性能
合理设计光催化剂的缺陷工程和界面内置电场是可再生能源转换的当务之急。本文采用引入镍空位、调节Se/Se比例和构建双结等多重策略,同时实现了NiSxSe2-x/相结CdS(HCC),使其具有优异的光催化活性和宽广的光吸收率。借助 VNi 和 S/Se 的调控,局部电子重新分布,占据更多的反键轨道,调整 p 带中心,从而优化催化剂的 H* 吸附能,加速光催化反应动力学。同时,相结和异质结形成的协同效应产生了双内置电场(BIEF),进一步放大了光生载流子的逐步分离和迁移。值得注意的是,在可见光照射下,VNi-NiSSe/HCC 实现了 11.43 mmol-g-1-h-1 的最佳 H2 演化率,在 420 纳米波长下的表观量子产率(AQY)为 15.3%,分别是 H-CdS 和 HCC 的 53 倍和 26.6 倍。此外,在 λ≥780 纳米的近红外(NIR)光下,它的氢进化率也达到了 147 µmol-g-1-h-1。这项工作为通过调节电子态和能态设计稳健的光催化剂提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信