{"title":"Large-scale long-tailed disease diagnosis on radiology images","authors":"Qiaoyu Zheng, Weike Zhao, Chaoyi Wu, Xiaoman Zhang, Lisong Dai, Hengyu Guan, Yuehua Li, Ya Zhang, Yanfeng Wang, Weidi Xie","doi":"10.1038/s41467-024-54424-6","DOIUrl":null,"url":null,"abstract":"<p>Developing a generalist radiology diagnosis system can greatly enhance clinical diagnostics. In this paper, we introduce RadDiag, a foundational model supporting 2D and 3D inputs across various modalities and anatomies, using a transformer-based fusion module for comprehensive disease diagnosis. Due to patient privacy concerns and the lack of large-scale radiology diagnosis datasets, we utilize high-quality, clinician-reviewed radiological images available online with diagnosis labels. Our dataset, RP3D-DiagDS, contains 40,936 cases with 195,010 scans covering 5568 disorders (930 unique ICD-10-CM codes). Experimentally, our RadDiag achieves 95.14% AUC on internal evaluation with the knowledge-enhancement strategy. Additionally, RadDiag can be zero-shot applied or fine-tuned to external diagnosis datasets sourced from various medical centers, demonstrating state-of-the-art results. In conclusion, we show that publicly shared medical data on the Internet is a tremendous and valuable resource that can potentially support building strong models for image understanding in healthcare.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54424-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a generalist radiology diagnosis system can greatly enhance clinical diagnostics. In this paper, we introduce RadDiag, a foundational model supporting 2D and 3D inputs across various modalities and anatomies, using a transformer-based fusion module for comprehensive disease diagnosis. Due to patient privacy concerns and the lack of large-scale radiology diagnosis datasets, we utilize high-quality, clinician-reviewed radiological images available online with diagnosis labels. Our dataset, RP3D-DiagDS, contains 40,936 cases with 195,010 scans covering 5568 disorders (930 unique ICD-10-CM codes). Experimentally, our RadDiag achieves 95.14% AUC on internal evaluation with the knowledge-enhancement strategy. Additionally, RadDiag can be zero-shot applied or fine-tuned to external diagnosis datasets sourced from various medical centers, demonstrating state-of-the-art results. In conclusion, we show that publicly shared medical data on the Internet is a tremendous and valuable resource that can potentially support building strong models for image understanding in healthcare.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.