Strong hole-photon coupling in planar Ge for probing charge degree and strongly correlated states

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Franco De Palma, Fabian Oppliger, Wonjin Jang, Stefano Bosco, Marián Janík, Stefano Calcaterra, Georgios Katsaros, Giovanni Isella, Daniel Loss, Pasquale Scarlino
{"title":"Strong hole-photon coupling in planar Ge for probing charge degree and strongly correlated states","authors":"Franco De Palma, Fabian Oppliger, Wonjin Jang, Stefano Bosco, Marián Janík, Stefano Calcaterra, Georgios Katsaros, Giovanni Isella, Daniel Loss, Pasquale Scarlino","doi":"10.1038/s41467-024-54520-7","DOIUrl":null,"url":null,"abstract":"<p>Semiconductor quantum dots (QDs) in planar germanium (Ge) heterostructures have emerged as front-runners for future hole-based quantum processors. Here, we present strong coupling between a hole charge qubit, defined in a double quantum dot (DQD) in planar Ge, and microwave photons in a high-impedance (<i>Z</i><sub>r</sub> = 1.3 k<i>Ω</i>) resonator based on an array of superconducting quantum interference devices (SQUIDs). Our investigation reveals vacuum-Rabi splittings with coupling strengths up to <i>g</i><sub>0</sub>/2<i>π</i> = 260 MHz, and a cooperativity of <i>C</i> ~ 100, dependent on DQD tuning. Furthermore, utilizing the frequency tunability of our resonator, we explore the quenched energy splitting associated with strong Coulomb correlation effects in Ge QDs. The observed enhanced coherence of the strongly correlated excited state signals the presence of distinct symmetries within related spin functions, serving as a precursor to the strong coupling between photons and spin-charge hybrid qubits in planar Ge. This work paves the way towards coherent quantum connections between remote hole qubits in planar Ge, required to scale up hole-based quantum processors.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"20 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54520-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Semiconductor quantum dots (QDs) in planar germanium (Ge) heterostructures have emerged as front-runners for future hole-based quantum processors. Here, we present strong coupling between a hole charge qubit, defined in a double quantum dot (DQD) in planar Ge, and microwave photons in a high-impedance (Zr = 1.3 kΩ) resonator based on an array of superconducting quantum interference devices (SQUIDs). Our investigation reveals vacuum-Rabi splittings with coupling strengths up to g0/2π = 260 MHz, and a cooperativity of C ~ 100, dependent on DQD tuning. Furthermore, utilizing the frequency tunability of our resonator, we explore the quenched energy splitting associated with strong Coulomb correlation effects in Ge QDs. The observed enhanced coherence of the strongly correlated excited state signals the presence of distinct symmetries within related spin functions, serving as a precursor to the strong coupling between photons and spin-charge hybrid qubits in planar Ge. This work paves the way towards coherent quantum connections between remote hole qubits in planar Ge, required to scale up hole-based quantum processors.

Abstract Image

平面 Ge 中的强空穴-光子耦合,用于探测电荷度和强相关态
平面锗(Ge)异质结构中的半导体量子点(QDs)已成为未来基于空穴的量子处理器的领跑者。在这里,我们展示了平面锗中双量子点(DQD)定义的空穴电荷量子比特与基于超导量子干涉器件(SQUID)阵列的高阻抗(Zr = 1.3 kΩ)谐振器中的微波光子之间的强耦合。我们的研究揭示了真空-拉比分裂,耦合强度高达 g0/2π = 260 MHz,合作度为 C ~ 100,取决于 DQD 的调谐。此外,我们还利用谐振器的频率可调性,探索了与 Ge QD 中强库仑相关效应相关的淬火能量分裂。观察到的强相关激发态相干性增强,表明相关自旋函数中存在不同的对称性,这是平面 Ge 中光子与自旋电荷混合量子比特之间强耦合的前兆。这项工作为实现平面 Ge 中远程空穴量子比特之间的相干量子连接铺平了道路,而这正是扩展基于空穴的量子处理器所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信