Experimental and Theoretical Insights on Gas Trapping of Noble Gases in MFU-4-Type Metal-Organic Frameworks.

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Hana Bunzen, Beliz Sertcan Gökmen, Andreas Kalytta-Mewes, Maciej Grzywa, Jakub Wojciechowski, Jürg Hutter, Anna-Sophia Hehn, Dirk Volkmer
{"title":"Experimental and Theoretical Insights on Gas Trapping of Noble Gases in MFU-4-Type Metal-Organic Frameworks.","authors":"Hana Bunzen, Beliz Sertcan Gökmen, Andreas Kalytta-Mewes, Maciej Grzywa, Jakub Wojciechowski, Jürg Hutter, Anna-Sophia Hehn, Dirk Volkmer","doi":"10.1002/chem.202403574","DOIUrl":null,"url":null,"abstract":"<p><p>Isostructural metal-organic frameworks (MOFs), namely MFU-4 and MFU-4-Br, in which the pore apertures are defined by anionic side ligands (Cl- and Br-, respectively), were synthesized and loaded with noble gases. By selecting the type of side ligand, one can fine-tune the pore aperture size, allowing for precise regulation of the entry and release of gas guests. In this study, we conducted experiments to examine gas loading and release using krypton and xenon as model gases, and we complemented our findings with computational modeling. Remarkably, the loaded gas guests remained trapped inside the pores even after being exposed to air under ambient conditions for extended periods, in some cases for up to several weeks. Therefore, we focused on determining the energy barrier preventing gas release using both theoretical and experimental methods. The results were compared in relation to the types of hosts and guests, providing valuable insights into the gas trapping process in MOFs, as well as programmed gas release in air under ambient conditions. Furthermore, the crystal structure of MFU-4-Br was elucidated using the three-dimensional electron diffraction (3DED) technique, and the bulk purity of the sample was subsequently verified through Rietveld refinement.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202403574"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403574","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Isostructural metal-organic frameworks (MOFs), namely MFU-4 and MFU-4-Br, in which the pore apertures are defined by anionic side ligands (Cl- and Br-, respectively), were synthesized and loaded with noble gases. By selecting the type of side ligand, one can fine-tune the pore aperture size, allowing for precise regulation of the entry and release of gas guests. In this study, we conducted experiments to examine gas loading and release using krypton and xenon as model gases, and we complemented our findings with computational modeling. Remarkably, the loaded gas guests remained trapped inside the pores even after being exposed to air under ambient conditions for extended periods, in some cases for up to several weeks. Therefore, we focused on determining the energy barrier preventing gas release using both theoretical and experimental methods. The results were compared in relation to the types of hosts and guests, providing valuable insights into the gas trapping process in MOFs, as well as programmed gas release in air under ambient conditions. Furthermore, the crystal structure of MFU-4-Br was elucidated using the three-dimensional electron diffraction (3DED) technique, and the bulk purity of the sample was subsequently verified through Rietveld refinement.

关于 MFU-4 型金属有机框架中惰性气体捕集的实验和理论见解。
我们合成了等结构金属有机框架(MOFs),即 MFU-4 和 MFU-4-Br,它们的孔径由阴离子侧配体(分别为 Cl- 和 Br-)确定,并装载了惰性气体。通过选择侧配体的类型,可以对孔径大小进行微调,从而精确调节气体客体的进入和释放。在这项研究中,我们以氪气和氙气为模型气体,进行了气体装载和释放实验,并通过计算建模对研究结果进行了补充。值得注意的是,即使在环境条件下长时间暴露于空气中,负载的气体客体仍然被困在孔隙内,有些情况下甚至长达数周。因此,我们重点利用理论和实验方法确定了阻止气体释放的能量屏障。我们将结果与宿主和客体的类型进行了比较,从而对 MOFs 中的气体捕集过程以及环境条件下空气中的程序性气体释放提供了宝贵的见解。此外,还利用三维电子衍射(3DED)技术阐明了 MFU-4-Br 的晶体结构,并随后通过里特维尔德精炼验证了样品的块状纯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信