{"title":"Piled-supported embankment responses to tunnelling in soft ground: An investigation of settlement and load transfer mechanisms","authors":"Mukhtiar Ali Soomro, Shaokai Xiong, Zhen-Dong Cui, Chenyang Zhao, Naeem Mangi","doi":"10.1016/j.tust.2024.106241","DOIUrl":null,"url":null,"abstract":"The escalation in infrastructure such as highways and high-speed railways has necessitated construction on soft and compressible ground, prompting the adoption of innovative solutions like piled-supported embankments. With the surge in tunnelling for transportations projects, the necessity of constructing tunnels in close proximity to piled embankments has become apparent. This study examines into settlement and load transfer mechanisms in piled-embankments affected by tunnel excavation at varying depths relative to pile lengths, employing a hypoplastic model to capture the nonlinear behaviour of soft soil. The findings indicate that the deepest tunnel caused the largest settlement, while the shallowest tunnel in led to the smallest settlement in the embankment due to pile settlements playing a significant role. The pile-soil stress ratio near the tunnel increased significantly when excavated close to pile shaft, contrasting substantially with decreased ratio in the tunnelling beneath the piled-embankment case. The bending moments in the piles exhibited differing behaviours in each case, with distinct trends observed in lateral movement and stress-induced responses. The axial load changes were influenced by factors such as negative skin friction, positive shaft resistance, and embankment weight transfer through arching, leading to unique load patterns along the pile length caused by the shallowest tunnel.","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"8 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tust.2024.106241","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The escalation in infrastructure such as highways and high-speed railways has necessitated construction on soft and compressible ground, prompting the adoption of innovative solutions like piled-supported embankments. With the surge in tunnelling for transportations projects, the necessity of constructing tunnels in close proximity to piled embankments has become apparent. This study examines into settlement and load transfer mechanisms in piled-embankments affected by tunnel excavation at varying depths relative to pile lengths, employing a hypoplastic model to capture the nonlinear behaviour of soft soil. The findings indicate that the deepest tunnel caused the largest settlement, while the shallowest tunnel in led to the smallest settlement in the embankment due to pile settlements playing a significant role. The pile-soil stress ratio near the tunnel increased significantly when excavated close to pile shaft, contrasting substantially with decreased ratio in the tunnelling beneath the piled-embankment case. The bending moments in the piles exhibited differing behaviours in each case, with distinct trends observed in lateral movement and stress-induced responses. The axial load changes were influenced by factors such as negative skin friction, positive shaft resistance, and embankment weight transfer through arching, leading to unique load patterns along the pile length caused by the shallowest tunnel.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.