The efficacy and active compounds of Chaihuang Qingyi Huoxue granule to Ameliorate intestinal mucosal barrier injury in rats with severe acute pancreatitis by suppressing the HMGB1/TLR4/NF-κB signaling pathway.
Jian-Qin Liu, Wei-An Hao, Ya-Li Liu, Dan Yang, Hong-Lian Wang, Long Zhao, Hui Chen, Li Li, Chao-Li Jiang, Xin Zhou, Juan Fu, Zhi Li
{"title":"The efficacy and active compounds of Chaihuang Qingyi Huoxue granule to Ameliorate intestinal mucosal barrier injury in rats with severe acute pancreatitis by suppressing the HMGB1/TLR4/NF-κB signaling pathway.","authors":"Jian-Qin Liu, Wei-An Hao, Ya-Li Liu, Dan Yang, Hong-Lian Wang, Long Zhao, Hui Chen, Li Li, Chao-Li Jiang, Xin Zhou, Juan Fu, Zhi Li","doi":"10.1016/j.intimp.2024.113632","DOIUrl":null,"url":null,"abstract":"<p><p>Intestinal mucosal barrier injury represents a critical complication of severe acute pancreatitis (SAP) without effective treatment. This study investigated the efficacy, underlying mechanism, and responsible active compounds of the traditional Chinese medicinal prescription Chaihuang Qingyi Huoxue granule (CHQY) in treating SAP-induced intestinal mucosal barrier injury. SAP was established in Sprague-Dawley rats via intra-pancreaticobiliary duct infusion of sodium taurocholate, followed by oral CHQY administration (3.15 g/kg every 6 h for 12 and 24 h). Blood and tissues were harvested to assess the severity of pancreatitis, intestinal mucosal barrier integrity, and extent of inflammatory injury. Intestine-absorbing compounds were identified using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). Our results showed that CHQY treatment effectively mitigated SAP-induced intestinal mucosal injury, as evidenced by improved intestinal epithelial structure, decreased serum levels of intestinal injury markers (d-lactic acid, diamine oxidase, I-FABP, and Zonulin), restored expression of the tight junction protein ZO-1, and reduced serum endotoxin levels. Furthermore, CHQY administration suppressed the expression of proinflammatory mediator HMGB1, its receptor TLR4, and downstream NF-κB signaling in the intestine, leading to downregulated intestinal IL-1β expression and reduced circulating TNF-α and IL-6. UHPLC-HRMS analysis identified 15 intestine-absorbing compounds in CHQY, of which paeoniflorin sulfite and chrysin-7-O-glucuronide independently inhibited TNF-α-induced tight junction loss in IEC-6 cells and mitigated intestinal mucosal barrier injury in SAP rats through suppressing NF-κB signaling. In summary, CHQY ameliorates SAP-induced intestinal mucosal barrier injury by downregulating the proinflammatory HMGB1/TLR4/NF-κB signaling, with efficacy partially attributed to its active compounds paeoniflorin sulfite and chrysin-7-O-glucuronide.</p>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"144 ","pages":"113632"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.intimp.2024.113632","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intestinal mucosal barrier injury represents a critical complication of severe acute pancreatitis (SAP) without effective treatment. This study investigated the efficacy, underlying mechanism, and responsible active compounds of the traditional Chinese medicinal prescription Chaihuang Qingyi Huoxue granule (CHQY) in treating SAP-induced intestinal mucosal barrier injury. SAP was established in Sprague-Dawley rats via intra-pancreaticobiliary duct infusion of sodium taurocholate, followed by oral CHQY administration (3.15 g/kg every 6 h for 12 and 24 h). Blood and tissues were harvested to assess the severity of pancreatitis, intestinal mucosal barrier integrity, and extent of inflammatory injury. Intestine-absorbing compounds were identified using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). Our results showed that CHQY treatment effectively mitigated SAP-induced intestinal mucosal injury, as evidenced by improved intestinal epithelial structure, decreased serum levels of intestinal injury markers (d-lactic acid, diamine oxidase, I-FABP, and Zonulin), restored expression of the tight junction protein ZO-1, and reduced serum endotoxin levels. Furthermore, CHQY administration suppressed the expression of proinflammatory mediator HMGB1, its receptor TLR4, and downstream NF-κB signaling in the intestine, leading to downregulated intestinal IL-1β expression and reduced circulating TNF-α and IL-6. UHPLC-HRMS analysis identified 15 intestine-absorbing compounds in CHQY, of which paeoniflorin sulfite and chrysin-7-O-glucuronide independently inhibited TNF-α-induced tight junction loss in IEC-6 cells and mitigated intestinal mucosal barrier injury in SAP rats through suppressing NF-κB signaling. In summary, CHQY ameliorates SAP-induced intestinal mucosal barrier injury by downregulating the proinflammatory HMGB1/TLR4/NF-κB signaling, with efficacy partially attributed to its active compounds paeoniflorin sulfite and chrysin-7-O-glucuronide.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.