On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Asymptotic Expansion

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Ling-Bing He, Xuguang Lu, Mario Pulvirenti, Yu-Long Zhou
{"title":"On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Asymptotic Expansion","authors":"Ling-Bing He,&nbsp;Xuguang Lu,&nbsp;Mario Pulvirenti,&nbsp;Yu-Long Zhou","doi":"10.1007/s00220-024-05174-5","DOIUrl":null,"url":null,"abstract":"<div><p>We continue our previous work He et al. (Commun Math Phys 386: 143–223, 2021) on the limit of the spatially homogeneous quantum Boltzmann equation as the Planck constant <span>\\(\\epsilon \\)</span> tends to zero, also known as the semi-classical limit. For general interaction potential, we prove the following: (i). The spatially homogeneous quantum Boltzmann equations are locally well-posed in some weighted Sobolev spaces with quantitative estimates uniformly in <span>\\(\\epsilon \\)</span>. (ii). The semi-classical limit can be further described by the following asymptotic expansion formula: </p><div><div><span>$$\\begin{aligned} f^\\epsilon (t,v)=f_L(t,v)+O(\\epsilon ^{\\vartheta }). \\end{aligned}$$</span></div></div><p>This holds locally in time in Sobolev spaces. Here <span>\\(f^\\epsilon \\)</span> and <span>\\(f_L\\)</span> are solutions to the quantum Boltzmann equation and the Fokker–Planck–Landau equation with the same initial data. The convergent rate <span>\\(0&lt;\\vartheta \\le 1\\)</span> depends on the integrability of the Fourier transform of the particle interaction potential. Our new ingredients lie in a detailed analysis of the Uehling-Uhlenbeck operator from both angular cutoff and non-cutoff perspectives.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05174-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We continue our previous work He et al. (Commun Math Phys 386: 143–223, 2021) on the limit of the spatially homogeneous quantum Boltzmann equation as the Planck constant \(\epsilon \) tends to zero, also known as the semi-classical limit. For general interaction potential, we prove the following: (i). The spatially homogeneous quantum Boltzmann equations are locally well-posed in some weighted Sobolev spaces with quantitative estimates uniformly in \(\epsilon \). (ii). The semi-classical limit can be further described by the following asymptotic expansion formula:

$$\begin{aligned} f^\epsilon (t,v)=f_L(t,v)+O(\epsilon ^{\vartheta }). \end{aligned}$$

This holds locally in time in Sobolev spaces. Here \(f^\epsilon \) and \(f_L\) are solutions to the quantum Boltzmann equation and the Fokker–Planck–Landau equation with the same initial data. The convergent rate \(0<\vartheta \le 1\) depends on the integrability of the Fourier transform of the particle interaction potential. Our new ingredients lie in a detailed analysis of the Uehling-Uhlenbeck operator from both angular cutoff and non-cutoff perspectives.

论空间均质量子玻尔兹曼方程的半经典极限:渐近展开
我们继续之前 He 等人 (Commun Math Phys 386: 143-223, 2021) 的工作,研究普朗克常数 \(\epsilon \) 趋于零时空间均相量子玻尔兹曼方程的极限,也称为半经典极限。对于一般的相互作用势,我们证明了以下几点:(i).空间均相量子玻尔兹曼方程在某些加权索波列夫空间中局部地好求,并在\(\epsilon \)中均匀地具有定量估计。(ii).半经典极限可以用下面的渐近展开公式进一步描述:$$\begin{aligned} f^\epsilon (t,v)=f_L(t,v)+O(\epsilon ^{\vartheta })。\end{aligned}$$This holds locally in time in Sobolev spaces.这里 \(f^\epsilon \) 和 \(f_L\) 是具有相同初始数据的量子波尔兹曼方程和福克-普朗克-朗道方程的解。收敛速率(0<\vartheta \le 1\ )取决于粒子相互作用势的傅立叶变换的可积分性。我们的新内容在于从角度截止和非截止两个角度详细分析了Uehling-Uhlenbeck算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信