Dynamic analysis of phytoplankton–zooplankton–fish singular perturbation system on three time-scales

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xin Ai, Yue Zhang
{"title":"Dynamic analysis of phytoplankton–zooplankton–fish singular perturbation system on three time-scales","authors":"Xin Ai, Yue Zhang","doi":"10.1016/j.chaos.2024.115711","DOIUrl":null,"url":null,"abstract":"In this paper, a three-time scale plankton–fish singular perturbation system is proposed by considering the Beddington–DeAngelis functional response and intraguild predation (IGP). For (1, 2)-fast–slow systems, the singularity and classification of generic fold points are discussed. The small amplitude oscillations (SAOs) will generate around the weak characteristic direction near the folded node, which provides a theoretical reference for effectively predicting the phenomenon of algal blooms. It is also obtained that the small amplitude oscillation cannot be generated by the singular Hopf bifurcation and the folded node mechanism. For (2, 1)-fast–slow systems, the existence of singular Hopf bifurcation is discussed by using the center manifold reduction method. The stability of the periodic solution of the singular Hopf bifurcation is discussed. Furthermore, the existence and uniqueness of the relaxation oscillation in <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math> are researched by using the entry–exit function. In addition, the effect of stochastic factors on the singular perturbation system is considered.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"13 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115711","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a three-time scale plankton–fish singular perturbation system is proposed by considering the Beddington–DeAngelis functional response and intraguild predation (IGP). For (1, 2)-fast–slow systems, the singularity and classification of generic fold points are discussed. The small amplitude oscillations (SAOs) will generate around the weak characteristic direction near the folded node, which provides a theoretical reference for effectively predicting the phenomenon of algal blooms. It is also obtained that the small amplitude oscillation cannot be generated by the singular Hopf bifurcation and the folded node mechanism. For (2, 1)-fast–slow systems, the existence of singular Hopf bifurcation is discussed by using the center manifold reduction method. The stability of the periodic solution of the singular Hopf bifurcation is discussed. Furthermore, the existence and uniqueness of the relaxation oscillation in R3 are researched by using the entry–exit function. In addition, the effect of stochastic factors on the singular perturbation system is considered.
浮游植物-浮游动物-鱼类奇异扰动系统在三个时间尺度上的动态分析
本文通过考虑贝丁顿-德安吉利斯(Beddington-DeAngelis)功能响应和群内捕食(IGP),提出了三时间尺度浮游鱼类奇异扰动系统。针对(1,2)-快-慢系统,讨论了奇异性和一般折叠点的分类。小振幅振荡(SAOs)将围绕折叠节点附近的弱特征方向产生,这为有效预测藻华现象提供了理论参考。研究还发现,奇异霍普夫分岔和折叠节点机制无法产生小振幅振荡。对于(2,1)-快-慢系统,利用中心流形还原法讨论了奇异霍普夫分岔的存在性。讨论了奇异霍普夫分岔周期解的稳定性。此外,利用出入函数研究了 R3 中松弛振荡的存在性和唯一性。此外,还考虑了随机因素对奇异扰动系统的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信