Temperature Evolution of Plasmonic Probes for Tip-Enhanced Raman Scattering

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Sergey P. Polyutov, Daniil E. Khrennikov, Artem S. Kostyukov, Maxim A. Visotin, Lasse K. Sørensen, Valeriy S. Gerasimov, Alexander E. Ershov, Sergey V. Karpov, Hans Ågren
{"title":"Temperature Evolution of Plasmonic Probes for Tip-Enhanced Raman Scattering","authors":"Sergey P. Polyutov, Daniil E. Khrennikov, Artem S. Kostyukov, Maxim A. Visotin, Lasse K. Sørensen, Valeriy S. Gerasimov, Alexander E. Ershov, Sergey V. Karpov, Hans Ågren","doi":"10.1021/acs.jpcc.4c05812","DOIUrl":null,"url":null,"abstract":"This work delves into the processes leading to the evolution of nanofocusing plasmonic probes utilized in applications like tip-enhanced Raman spectroscopy, primarily under temperature growth. We identify stable crystallographic configurations of possible plasmonic tips that can withstand external influence, retain their original shape, and preserve their performance to enhance the local electromagnetic field under heat exposure. Employing molecular dynamics simulations, we study the behavior of plasmonic probes in the shape of sharp-edged gold nanotetrahedra as a case study. This makes it possible to observe the evolution of the shape and its impact on the light-concentrating performance of such probes. We identify the origin of shape instability and demonstrate that the migration of surface atoms from the tip area serves as the primary driver of shape variability in highly nonspherical plasmonic nanoparticles. By modeling the optical characteristics of the plasmonic probes utilizing the atomic discrete interaction model and finite element methods, we track alterations in the local electromagnetic field close to the apex of these gold nanotetrahedra at the plasmon resonance wavelength in the process of evolution. This analysis provides insight into the evolution of the field enhancement factor as the plasmonic tips degrade over time.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"13 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c05812","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work delves into the processes leading to the evolution of nanofocusing plasmonic probes utilized in applications like tip-enhanced Raman spectroscopy, primarily under temperature growth. We identify stable crystallographic configurations of possible plasmonic tips that can withstand external influence, retain their original shape, and preserve their performance to enhance the local electromagnetic field under heat exposure. Employing molecular dynamics simulations, we study the behavior of plasmonic probes in the shape of sharp-edged gold nanotetrahedra as a case study. This makes it possible to observe the evolution of the shape and its impact on the light-concentrating performance of such probes. We identify the origin of shape instability and demonstrate that the migration of surface atoms from the tip area serves as the primary driver of shape variability in highly nonspherical plasmonic nanoparticles. By modeling the optical characteristics of the plasmonic probes utilizing the atomic discrete interaction model and finite element methods, we track alterations in the local electromagnetic field close to the apex of these gold nanotetrahedra at the plasmon resonance wavelength in the process of evolution. This analysis provides insight into the evolution of the field enhancement factor as the plasmonic tips degrade over time.

Abstract Image

用于尖端增强拉曼散射的等离子探针的温度演变
这项研究深入探讨了在尖端增强拉曼光谱等应用中使用的纳米聚焦等离子探针的演变过程,主要是在温度增长的条件下。我们确定了可能的等离子体尖端的稳定晶体结构,这些晶体结构可以承受外部影响,保持原有形状,并在热暴露条件下保持其增强局部电磁场的性能。通过分子动力学模拟,我们以尖角金纳米四面体为例,研究了等离子探针的行为。这使得我们有可能观察形状的演变及其对此类探针聚光性能的影响。我们确定了形状不稳定性的根源,并证明了表面原子从尖端区域的迁移是高度非球形等离子纳米粒子形状变化的主要驱动力。通过利用原子离散相互作用模型和有限元方法对等离子探针的光学特性进行建模,我们跟踪了这些金纳米四面体顶点附近等离子共振波长的局部电磁场在演化过程中的变化。通过这一分析,我们可以深入了解等离子体尖端随时间退化时场增强因子的演变情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信