Faima Alam, Muhammad Ismail, Masroor Kamal, Fayaz Ur Rahman, Aftab Alam, Abdullah F. AlAsmari, Fawaz Alasmari, Momin Khan
{"title":"Investigating the Tyrosinase Inhibitory Activity of 4-Bromobenzoic Acid Hydrazone-Schiff Bases: In Vitro, Molecular Structure and Docking Studies","authors":"Faima Alam, Muhammad Ismail, Masroor Kamal, Fayaz Ur Rahman, Aftab Alam, Abdullah F. AlAsmari, Fawaz Alasmari, Momin Khan","doi":"10.1002/slct.202401987","DOIUrl":null,"url":null,"abstract":"<p>Fourteen hydrazone-Schiff base derivatives bearing 4-bromobenzoic acid have been successfully synthesized, characterized by means of <sup>1</sup>H-NMR and EI-MS spectrometry and finally evaluated for <i>in vitro</i> tyrosinase inhibitory activity. Among the series, five compounds <b>2 g</b>, <b>2 k</b>, <b>2 d</b>, <b>2 c</b>, and <b>2 n</b> attributed potent tyrosinase inhibitors with IC<sub>50</sub> values ranging from (IC<sub>50</sub>=6.07±0.40 μM) to (IC<sub>50</sub>=13.15±0.09 μM) surpassing the standard drug kojic acid (IC<sub>50</sub>=16.9±1.30 μM). Furthermore, the remaining compounds demonstrated significant to less inhibition. The density functional theory (DFT) study was performed to investigate various electronic properties such as geometry optimization, global reactivity parameter, frontier molecular orbitals (FMOs), molecular electrostatic potential map (MEPM), theoretical <sup>1</sup>H-NMR chemical shift, and nonlinear optical properties (NLO). Theoretical study shows good agreement with experimental study and NLO analysis suggest that the targeted compounds are good candidates with nonlinear optics. Furthermore, the docking studies were executed on the synthesized derivatives in order to explain the binding interface of compounds with the active sites of tyrosinase enzyme. The potent compounds observed in the current work may lead them promising candidates for future drug development.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"9 44","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202401987","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fourteen hydrazone-Schiff base derivatives bearing 4-bromobenzoic acid have been successfully synthesized, characterized by means of 1H-NMR and EI-MS spectrometry and finally evaluated for in vitro tyrosinase inhibitory activity. Among the series, five compounds 2 g, 2 k, 2 d, 2 c, and 2 n attributed potent tyrosinase inhibitors with IC50 values ranging from (IC50=6.07±0.40 μM) to (IC50=13.15±0.09 μM) surpassing the standard drug kojic acid (IC50=16.9±1.30 μM). Furthermore, the remaining compounds demonstrated significant to less inhibition. The density functional theory (DFT) study was performed to investigate various electronic properties such as geometry optimization, global reactivity parameter, frontier molecular orbitals (FMOs), molecular electrostatic potential map (MEPM), theoretical 1H-NMR chemical shift, and nonlinear optical properties (NLO). Theoretical study shows good agreement with experimental study and NLO analysis suggest that the targeted compounds are good candidates with nonlinear optics. Furthermore, the docking studies were executed on the synthesized derivatives in order to explain the binding interface of compounds with the active sites of tyrosinase enzyme. The potent compounds observed in the current work may lead them promising candidates for future drug development.
期刊介绍:
ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.