Construction of varieties of low codimension with applications to moduli spaces of varieties of general type

IF 1 2区 数学 Q1 MATHEMATICS
Purnaprajna Bangere, Francisco Javier Gallego, Jayan Mukherjee, Debaditya Raychaudhury
{"title":"Construction of varieties of low codimension with applications to moduli spaces of varieties of general type","authors":"Purnaprajna Bangere,&nbsp;Francisco Javier Gallego,&nbsp;Jayan Mukherjee,&nbsp;Debaditya Raychaudhury","doi":"10.1112/jlms.70030","DOIUrl":null,"url":null,"abstract":"<p>We develop a new way of systematically constructing infinitely many families of smooth subvarieties <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> of any given dimension <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$m \\geqslant 3$</annotation>\n </semantics></math>, and any given codimension in <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mi>N</mi>\n </msup>\n <annotation>$\\mathbb {P}^N$</annotation>\n </semantics></math>, embedded by complete subcanonical linear series, and, in particular, in the range of Hartshorne's conjecture. We accomplish this by showing the existence of everywhere non-reduced schemes called ropes, embedded in <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mi>N</mi>\n </msup>\n <annotation>$\\mathbb {P}^N$</annotation>\n </semantics></math>, and by smoothing them. In the range <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>⩽</mo>\n <mi>m</mi>\n <mo>&lt;</mo>\n <mrow>\n <mi>N</mi>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation>$3 \\leqslant m &amp;lt; {{N/2}}$</annotation>\n </semantics></math>, we construct smooth subvarieties, embedded by complete subcanonical linear series, that are not complete intersections. We also go beyond a question of Enriques on constructing simple canonical surfaces in projective spaces, and construct simple canonical varieties in all dimensions. The canonical map of infinitely many of these simple canonical varieties is finite birational but not an embedding. Finally, we show the existence of components of moduli spaces of varieties of general type (in all dimensions <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$m \\geqslant 3$</annotation>\n </semantics></math>) that are analogues of the moduli space of curves of genus <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>&gt;</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$g &amp;gt; 2$</annotation>\n </semantics></math> with respect to the behavior of the canonical map and its deformations. In many cases, the general elements of these components are canonically embedded and their codimension is in the range of Hartshorne's conjecture.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70030","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a new way of systematically constructing infinitely many families of smooth subvarieties X $X$ of any given dimension m $m$ , m 3 $m \geqslant 3$ , and any given codimension in P N $\mathbb {P}^N$ , embedded by complete subcanonical linear series, and, in particular, in the range of Hartshorne's conjecture. We accomplish this by showing the existence of everywhere non-reduced schemes called ropes, embedded in P N $\mathbb {P}^N$ , and by smoothing them. In the range 3 m < N / 2 $3 \leqslant m &lt; {{N/2}}$ , we construct smooth subvarieties, embedded by complete subcanonical linear series, that are not complete intersections. We also go beyond a question of Enriques on constructing simple canonical surfaces in projective spaces, and construct simple canonical varieties in all dimensions. The canonical map of infinitely many of these simple canonical varieties is finite birational but not an embedding. Finally, we show the existence of components of moduli spaces of varieties of general type (in all dimensions m $m$ , m 3 $m \geqslant 3$ ) that are analogues of the moduli space of curves of genus g > 2 $g &gt; 2$ with respect to the behavior of the canonical map and its deformations. In many cases, the general elements of these components are canonically embedded and their codimension is in the range of Hartshorne's conjecture.

低标度变体的构造及其在一般类型变体模空间中的应用
我们开发了一种新方法,可以系统地构造任意给定维数 m $m$ , m ⩾ 3 $m \geqslant 3$ , 以及 P N $\mathbb {P}^N$ 中任意给定编码维数的无限多光滑子域 X $X$ 族,这些子域由完全次经典线性数列嵌入,尤其是在哈特肖恩猜想的范围内。为此,我们证明了嵌入 P N $\mathbb {P}^N$ 的无处不还原的方案(称为绳索)的存在,并对其进行平滑处理。在 3 ⩽ m < N / 2 $3 \leqslant m &lt; {{N/2}}$ 的范围内,我们通过完整的次经典线性数列嵌入,构造了不是完全交集的光滑子域。我们还超越了恩里克斯提出的关于在投影空间中构造简单典型面的问题,构造了所有维度中的简单典型面。无限多的这些简单典型面的典型映射是有限双向的,但不是嵌入。最后,我们证明了一般类型(在所有维度上 m $m$ , m ⩾ 3 $m \geqslant 3$)曲线的模空间存在类似于g > 2 $g &gt; 2$属曲线的模空间的成分,这些成分与典型映射及其变形的行为有关。在许多情况下,这些分量的一般元素都是典型嵌入的,而且它们的标度都在哈特肖恩猜想的范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信