{"title":"Schematic Structural Analysis of Honeycomb Structure Ultrathin Ce–Ti–O Films on Pt(111) Using Photoelectron Holography and Ab Initio Calculation","authors":"Xu Li, Shougo Yamada, Yuya Yamada, Momoko Yoshida, Yusuke Hashimoto, Tomohiro Matsushita, Weiliang Ma, Emilie Gaudry, Junji Yuhara","doi":"10.1021/acs.jpcc.4c05269","DOIUrl":null,"url":null,"abstract":"(√3 × √3)R30 honeycomb superstructure ultrathin Ce–Ti–O film was prepared and confirmed using scanning tunneling microscopy (STM) and low-energy electron diffraction. The structural model of (√3 × √3)R30 honeycomb superstructure ultrathin film is determined using ab initio calculation and photoelectron holography. In the density functional theory (DFT) calculations, the (√3 × √3)R30 honeycomb superstructural model was calculated in two different conditions. The photoelectron holograms of Ti<sup>2+</sup> and Ti<sup>3+</sup> were separated from Ti 2p photoelectron spectra of (√3 × √3)R30 honeycomb superstructure, using a display-type retarding field analyzer. From the different forward-focusing peaks on the photoelectron holograms of Ti<sup>2+</sup> and Ti<sup>3+</sup>, the vertical height between Ti divalent atoms and O atoms is higher than that between Ti trivalent atoms and O atoms. Also, the distance and direction of O and Ce atoms above Ti could be found. As a result, the simulated photoelectron holograms and the simulated STM image of the calculated Ce–Ti–O honeycomb superstructural model agree with the experimental photoelectron holograms and the experimental STM images.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"74 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c05269","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
(√3 × √3)R30 honeycomb superstructure ultrathin Ce–Ti–O film was prepared and confirmed using scanning tunneling microscopy (STM) and low-energy electron diffraction. The structural model of (√3 × √3)R30 honeycomb superstructure ultrathin film is determined using ab initio calculation and photoelectron holography. In the density functional theory (DFT) calculations, the (√3 × √3)R30 honeycomb superstructural model was calculated in two different conditions. The photoelectron holograms of Ti2+ and Ti3+ were separated from Ti 2p photoelectron spectra of (√3 × √3)R30 honeycomb superstructure, using a display-type retarding field analyzer. From the different forward-focusing peaks on the photoelectron holograms of Ti2+ and Ti3+, the vertical height between Ti divalent atoms and O atoms is higher than that between Ti trivalent atoms and O atoms. Also, the distance and direction of O and Ce atoms above Ti could be found. As a result, the simulated photoelectron holograms and the simulated STM image of the calculated Ce–Ti–O honeycomb superstructural model agree with the experimental photoelectron holograms and the experimental STM images.
期刊介绍:
The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.