Wolfgang Klassen, Shomi Ahmed, Kiera Pond Grehan, Chris Hovde, Kirk W. Madison, Russell R. Mammei, Jeffery W. Martin, Mark McCrea, Tahereh Mohammadi, Takamasa Momose, Patrick Opsahl, David C. M. Ostapchuk
{"title":"Demonstration of magnetically silent optically pumped magnetometers for the TUCAN electric dipole moment experiment","authors":"Wolfgang Klassen, Shomi Ahmed, Kiera Pond Grehan, Chris Hovde, Kirk W. Madison, Russell R. Mammei, Jeffery W. Martin, Mark McCrea, Tahereh Mohammadi, Takamasa Momose, Patrick Opsahl, David C. M. Ostapchuk","doi":"10.1140/epjc/s10052-024-13544-5","DOIUrl":null,"url":null,"abstract":"<div><p>We report the performance of a magnetically silent optically pumped cesium magnetometer with a statistical sensitivity of 3.5 pT/<span>\\(\\sqrt{\\textrm{Hz}}\\)</span> at 1 Hz and a stability of 90 fT over 150 s of measurement. Optical pumping with coherent, linearly-polarized, resonant light leads to a relatively long-lived polarized ground state of the cesium vapour contained in a measurement cell. The state precesses at its Larmor frequency in the magnetic field to be measured. Nonlinear magneto-optical rotation then leads to the rotation of the plane of polarization of a linearly polarized probe laser beam. The rotation angle is modulated at twice the Larmor frequency. A measurement of this frequency constitutes an absolute measurement of the magnetic field magnitude. Featuring purely optical operation, non-magnetic construction, low noise floor, and high stability, this sensor will be used for the upcoming TUCAN electric dipole moment experiment and other highly sensitive magnetic applications. Novel aspects of the system include commercial construction and the ability to operate up to 24 sensors on a single probe laser diode.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13544-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13544-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
We report the performance of a magnetically silent optically pumped cesium magnetometer with a statistical sensitivity of 3.5 pT/\(\sqrt{\textrm{Hz}}\) at 1 Hz and a stability of 90 fT over 150 s of measurement. Optical pumping with coherent, linearly-polarized, resonant light leads to a relatively long-lived polarized ground state of the cesium vapour contained in a measurement cell. The state precesses at its Larmor frequency in the magnetic field to be measured. Nonlinear magneto-optical rotation then leads to the rotation of the plane of polarization of a linearly polarized probe laser beam. The rotation angle is modulated at twice the Larmor frequency. A measurement of this frequency constitutes an absolute measurement of the magnetic field magnitude. Featuring purely optical operation, non-magnetic construction, low noise floor, and high stability, this sensor will be used for the upcoming TUCAN electric dipole moment experiment and other highly sensitive magnetic applications. Novel aspects of the system include commercial construction and the ability to operate up to 24 sensors on a single probe laser diode.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.