New physics as a possible explanation for the Amaterasu particle

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Rodrigo Guedes Lang
{"title":"New physics as a possible explanation for the Amaterasu particle","authors":"Rodrigo Guedes Lang","doi":"10.1088/1475-7516/2024/11/023","DOIUrl":null,"url":null,"abstract":"The Telescope Array experiment has recently reported the most energetic event detected in the hybrid technique era, with a reconstructed energy of 240 EeV, which has been named “Amaterasu” after the Shinto deity. Its origin is intriguing since no powerful enough candidate sources are located within the region consistent with its propagation horizon and arrival direction. In this work, we investigate the possibility of describing its origin in a scenario of new physics, specifically under a Lorentz Invariance Violation (LIV) assumption. The kinematics of UHECR propagation under a phenomenological LIV approach is investigated. The total mean free path for a particle with Amaterasu's energy increases from a few Mpc to hundreds of Mpc for -δhad,0 > 10-22, expanding significantly the region from which it could have originated. A combined fit of the spectrum and composition data of Telescope Array under different LIV assumptions was also performed. The data is best fitted with some level of LIV both with and without Amaterasu. Robustness with data from the Pierre Auger Observatory is investigated by exploring an intermediate composition scenario. Similar improvements in the description of the data with LIV are found for that. New physics in the form of LIV could, thus, provide a plausible and robust explanation for the Amaterasu particle.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"52 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/11/023","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Telescope Array experiment has recently reported the most energetic event detected in the hybrid technique era, with a reconstructed energy of 240 EeV, which has been named “Amaterasu” after the Shinto deity. Its origin is intriguing since no powerful enough candidate sources are located within the region consistent with its propagation horizon and arrival direction. In this work, we investigate the possibility of describing its origin in a scenario of new physics, specifically under a Lorentz Invariance Violation (LIV) assumption. The kinematics of UHECR propagation under a phenomenological LIV approach is investigated. The total mean free path for a particle with Amaterasu's energy increases from a few Mpc to hundreds of Mpc for -δhad,0 > 10-22, expanding significantly the region from which it could have originated. A combined fit of the spectrum and composition data of Telescope Array under different LIV assumptions was also performed. The data is best fitted with some level of LIV both with and without Amaterasu. Robustness with data from the Pierre Auger Observatory is investigated by exploring an intermediate composition scenario. Similar improvements in the description of the data with LIV are found for that. New physics in the form of LIV could, thus, provide a plausible and robust explanation for the Amaterasu particle.
新物理学作为天照粒子的可能解释
望远镜阵列实验最近报告了在混合技术时代探测到的能量最高的事件,其重建能量为 240 EeV,并以神道神灵的名字命名为 "天照"。由于在与其传播范围和到达方向一致的区域内没有足够强大的候选源,因此其起源令人好奇。在这项工作中,我们研究了在新物理学情景下描述其起源的可能性,特别是在洛伦兹不变量违反(LIV)假设下。我们研究了 UHECR 在现象学 LIV 方法下的传播运动学。当-δhad,0 > 10-22时,具有天照能量的粒子的总平均自由路径从几Mpc增加到几百Mpc,从而显著扩大了它可能起源的区域。在不同的 LIV 假设下,还对望远镜阵列的光谱和成分数据进行了综合拟合。在有天照和没有天照的情况下,某种程度的 LIV 都能最好地拟合数据。通过探索中间成分情况,研究了与皮埃尔-奥格天文台数据的鲁棒性。结果发现,使用 LIV 对数据的描述也有类似的改进。因此,LIV形式的新物理学可以为天照粒子提供一个合理而稳健的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信