Tiberius: End-to-end deep learning with an HMM for gene prediction.

Lars Gabriel, Felix Becker, Katharina J Hoff, Mario Stanke
{"title":"Tiberius: End-to-end deep learning with an HMM for gene prediction.","authors":"Lars Gabriel, Felix Becker, Katharina J Hoff, Mario Stanke","doi":"10.1093/bioinformatics/btae685","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>For more than 25 years, learning-based eukaryotic gene predictors were driven by hidden Markov models (HMMs), which were directly inputted a DNA sequence. Recently, Holst et al. demonstrated with their program Helixer that the accuracy of ab initio eukaryotic gene prediction can be improved by combining deep learning layers with a separate HMM postprocessor.</p><p><strong>Results: </strong>We present Tiberius, a novel deep learning-based ab initio gene predictor that end-to-end integrates convolutional and long short-term memory layers with a differentiable HMM layer. Tiberius uses a custom gene prediction loss and was trained for prediction in mammalian genomes and evaluated on human and two other genomes. It significantly outperforms existing ab initio methods, achieving F1-scores of 62% at gene level for the human genome, compared to 21% for the next best ab initio method. In de novo mode, Tiberius predicts the exon-intron structure of two out of three human genes without error. Remarkably, even Tiberius's ab initio accuracy matches that of BRAKER3, which uses RNA-seq data and a protein database. Tiberius's highly parallelized model is the fastest state-of-the-art gene prediction method, processing the human genome in under 2 hours.</p><p><strong>Availability and implementation: </strong>https://github.com/Gaius-Augustus/Tiberius.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: For more than 25 years, learning-based eukaryotic gene predictors were driven by hidden Markov models (HMMs), which were directly inputted a DNA sequence. Recently, Holst et al. demonstrated with their program Helixer that the accuracy of ab initio eukaryotic gene prediction can be improved by combining deep learning layers with a separate HMM postprocessor.

Results: We present Tiberius, a novel deep learning-based ab initio gene predictor that end-to-end integrates convolutional and long short-term memory layers with a differentiable HMM layer. Tiberius uses a custom gene prediction loss and was trained for prediction in mammalian genomes and evaluated on human and two other genomes. It significantly outperforms existing ab initio methods, achieving F1-scores of 62% at gene level for the human genome, compared to 21% for the next best ab initio method. In de novo mode, Tiberius predicts the exon-intron structure of two out of three human genes without error. Remarkably, even Tiberius's ab initio accuracy matches that of BRAKER3, which uses RNA-seq data and a protein database. Tiberius's highly parallelized model is the fastest state-of-the-art gene prediction method, processing the human genome in under 2 hours.

Availability and implementation: https://github.com/Gaius-Augustus/Tiberius.

Tiberius:利用 HMM 进行端到端深度学习,实现基因预测。
动机25 年来,基于学习的真核生物基因预测器一直由直接输入 DNA 序列的隐马尔可夫模型(HMM)驱动。最近,Holst 等人利用他们的程序 Helixer 证明,通过将深度学习层与单独的 HMM 后处理器相结合,可以提高自证真核基因预测的准确性:我们介绍了基于深度学习的新型自证基因预测器 Tiberius,该预测器端到端集成了卷积层、长短期记忆层和可微分 HMM 层。Tiberius 使用定制的基因预测损失,针对哺乳动物基因组的预测进行了训练,并在人类和其他两个基因组上进行了评估。它的性能明显优于现有的自创方法,在人类基因组的基因水平上达到了 62% 的 F1 分数,而次好的自创方法只有 21%。在从头模式下,Tiberius 能准确预测三个人类基因中两个基因的外显子-内含子结构。值得注意的是,即使是 Tiberius 的自证准确率也能与使用 RNA-seq 数据和蛋白质数据库的 BRAKER3 相媲美。Tiberius 的高度并行化模型是目前最快的基因预测方法,处理人类基因组的时间不到 2 小时。可用性和实现:https://github.com/Gaius-Augustus/Tiberius。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信