Salah Bazzi, Stephan Stansfield, Neville Hogan, Dagmar Sternad
{"title":"Simplified internal models in human control of complex objects.","authors":"Salah Bazzi, Stephan Stansfield, Neville Hogan, Dagmar Sternad","doi":"10.1371/journal.pcbi.1012599","DOIUrl":null,"url":null,"abstract":"<p><p>Humans are skillful at manipulating objects that possess nonlinear underactuated dynamics, such as clothes or containers filled with liquids. Several studies suggested that humans implement a predictive model-based strategy to control such objects. However, these studies only considered unconstrained reaching without any object involved or, at most, linear mass-spring systems with relatively simple dynamics. It is not clear what internal model humans develop of more complex objects, and what level of granularity is represented. To answer these questions, this study examined a task where participants physically interacted with a nonlinear underactuated system mimicking a cup of sloshing coffee: a cup with a ball rolling inside. The cup and ball were simulated in a virtual environment and subjects interacted with the system via a haptic robotic interface. Participants were instructed to move the system and arrive at a target region with both cup and ball at rest, 'zeroing out' residual oscillations of the ball. This challenging task affords a solution known as 'input shaping', whereby a series of pulses moves the dynamic object to the target leaving no residual oscillations. Since the timing and amplitude of these pulses depend on the controller's internal model of the object, input shaping served as a tool to identify the subjects' internal representation of the cup-and-ball. Five simulations with different internal models were compared against the human data. Results showed that the features in the data were correctly predicted by a simple internal model that represented the cup-and-ball as a single rigid mass coupled to the hand impedance. These findings provide evidence that humans use simplified internal models along with mechanical impedance to manipulate complex objects.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"20 11","pages":"e1012599"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012599","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Humans are skillful at manipulating objects that possess nonlinear underactuated dynamics, such as clothes or containers filled with liquids. Several studies suggested that humans implement a predictive model-based strategy to control such objects. However, these studies only considered unconstrained reaching without any object involved or, at most, linear mass-spring systems with relatively simple dynamics. It is not clear what internal model humans develop of more complex objects, and what level of granularity is represented. To answer these questions, this study examined a task where participants physically interacted with a nonlinear underactuated system mimicking a cup of sloshing coffee: a cup with a ball rolling inside. The cup and ball were simulated in a virtual environment and subjects interacted with the system via a haptic robotic interface. Participants were instructed to move the system and arrive at a target region with both cup and ball at rest, 'zeroing out' residual oscillations of the ball. This challenging task affords a solution known as 'input shaping', whereby a series of pulses moves the dynamic object to the target leaving no residual oscillations. Since the timing and amplitude of these pulses depend on the controller's internal model of the object, input shaping served as a tool to identify the subjects' internal representation of the cup-and-ball. Five simulations with different internal models were compared against the human data. Results showed that the features in the data were correctly predicted by a simple internal model that represented the cup-and-ball as a single rigid mass coupled to the hand impedance. These findings provide evidence that humans use simplified internal models along with mechanical impedance to manipulate complex objects.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.