Wei Wang , Jialong Shi , Jianyong Sun , Arnaud Liefooghe , Qingfu Zhang
{"title":"A new parallel cooperative landscape smoothing algorithm and its applications on TSP and UBQP","authors":"Wei Wang , Jialong Shi , Jianyong Sun , Arnaud Liefooghe , Qingfu Zhang","doi":"10.1016/j.eswa.2024.125611","DOIUrl":null,"url":null,"abstract":"<div><div>Combinatorial optimization problem (COP) is difficult to solve because of the massive number of local optimal solutions in his solution space. Various methods have been put forward to smooth the solution space of COPs, including homotopic convex (HC) transformation for the traveling salesman problem (TSP). This paper extends the HC transformation approach to unconstrained binary quadratic programming (UBQP) by proposing a method to construct a unimodal toy UBQP of any size. We theoretically prove the unimodality of the constructed toy UBQP. After that, we apply this unimodal toy UBQP to smooth the original UBQP by using the HC transformation framework and empirically verify the smoothing effects. Subsequently, we introduce an iterative algorithmic framework incorporating HC transformation, referred as landscape smoothing iterated local search (LSILS). Our experimental analyses, conducted on various UBQP instances show the effectiveness of LSILS. Furthermore, this paper proposes a parallel cooperative variant of LSILS, denoted as PC-LSILS and apply it to both the UBQP and the TSP. Our experimental findings highlight that PC-LSILS improves the smoothing performance of the HC transformation, and further improves the overall performance of the algorithm.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"263 ","pages":"Article 125611"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424024783","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Combinatorial optimization problem (COP) is difficult to solve because of the massive number of local optimal solutions in his solution space. Various methods have been put forward to smooth the solution space of COPs, including homotopic convex (HC) transformation for the traveling salesman problem (TSP). This paper extends the HC transformation approach to unconstrained binary quadratic programming (UBQP) by proposing a method to construct a unimodal toy UBQP of any size. We theoretically prove the unimodality of the constructed toy UBQP. After that, we apply this unimodal toy UBQP to smooth the original UBQP by using the HC transformation framework and empirically verify the smoothing effects. Subsequently, we introduce an iterative algorithmic framework incorporating HC transformation, referred as landscape smoothing iterated local search (LSILS). Our experimental analyses, conducted on various UBQP instances show the effectiveness of LSILS. Furthermore, this paper proposes a parallel cooperative variant of LSILS, denoted as PC-LSILS and apply it to both the UBQP and the TSP. Our experimental findings highlight that PC-LSILS improves the smoothing performance of the HC transformation, and further improves the overall performance of the algorithm.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.