Temporal second-order two-grid finite element method for semilinear time-fractional Rayleigh–Stokes equations

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Zhijun Tan , Yunhua Zeng
{"title":"Temporal second-order two-grid finite element method for semilinear time-fractional Rayleigh–Stokes equations","authors":"Zhijun Tan ,&nbsp;Yunhua Zeng","doi":"10.1016/j.cam.2024.116375","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we have developed a temporal second-order two-grid FEM to solve the semilinear time-fractional Rayleigh–Stokes equations. The proposed two-grid FEM uses the L2-<span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>σ</mi></mrow></msub></math></span> scheme and second order scheme to approximate the Caputo fractional derivative and the time first-order derivative in temporal direction and the standard FEM in spatial direction. The <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm stability and error estimates for the standard finite element solution and the two-grid solution are derived. The results shown that as long as the mesh sizes satisfy <span><math><mrow><mi>H</mi><mo>=</mo><msup><mrow><mi>h</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></math></span> and <span><math><mrow><mi>H</mi><mo>=</mo><msup><mrow><mi>h</mi></mrow><mrow><mfrac><mrow><mi>r</mi></mrow><mrow><mn>2</mn><mi>r</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mrow></msup></mrow></math></span> respectively, the two-grid algorithm can achieve asymptotically optimal approximation. Furthermore, the non-uniform L2-<span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>σ</mi></mrow></msub></math></span> scheme was applied for temporal discretization to handle the weak singularity of the solution. Finally, the theoretical findings were confirmed by numerical results, and the effectiveness of the two-grid algorithm was demonstrated.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"459 ","pages":"Article 116375"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037704272400623X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we have developed a temporal second-order two-grid FEM to solve the semilinear time-fractional Rayleigh–Stokes equations. The proposed two-grid FEM uses the L2-1σ scheme and second order scheme to approximate the Caputo fractional derivative and the time first-order derivative in temporal direction and the standard FEM in spatial direction. The L2-norm and H1-norm stability and error estimates for the standard finite element solution and the two-grid solution are derived. The results shown that as long as the mesh sizes satisfy H=h12 and H=hr2r+2 respectively, the two-grid algorithm can achieve asymptotically optimal approximation. Furthermore, the non-uniform L2-1σ scheme was applied for temporal discretization to handle the weak singularity of the solution. Finally, the theoretical findings were confirmed by numerical results, and the effectiveness of the two-grid algorithm was demonstrated.
半线性时分数雷利-斯托克斯方程的时序二阶两网格有限元法
在本文中,我们开发了一种时间二阶两网格有限元来求解半线性时间分数雷利-斯托克斯方程。所提出的双网格有限元使用 L2-1σ 方案和二阶方案在时间方向上近似 Caputo 分数导数和时间一阶导数,在空间方向上近似标准有限元。推导了标准有限元求解和双网格求解的 L2-norm、H1-norm 稳定性和误差估计。结果表明,只要网格尺寸分别满足 H=h12 和 H=hr2r+2,双网格算法就能实现渐近最优逼近。此外,非均匀 L2-1σ 方案被用于时间离散化,以处理解的弱奇异性。最后,数值结果证实了理论结论,并证明了双网格算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信