Dongyu Liu , Jian Zhang , Alejandro M. Aragón , Angelo Simone
{"title":"The discontinuity-enriched finite element method for multiple intersecting discontinuities","authors":"Dongyu Liu , Jian Zhang , Alejandro M. Aragón , Angelo Simone","doi":"10.1016/j.cma.2024.117432","DOIUrl":null,"url":null,"abstract":"<div><div>We extend the Discontinuity-Enriched Finite Element Method (DE-FEM) to simulate intersecting discontinuities, such as those encountered in polycrystalline materials, multi-material wedge problems, and branched cracks. The proposed hierarchical enrichment functions capture weak and strong discontinuities at junctions within a single formulation. Several numerical applications to branched cracks and polycrystalline microstructures under both thermal and mechanical loads are presented to demonstrate the proposed method. Results indicate that DE-FEM can accurately capture complex discontinuous primal and gradient fields and attain convergence rates comparable to those of standard FEM using fitted meshes. The main advantages of DE-FEM equipped with the proposed junction enrichment functions lie in the method’s ability to model intersecting discontinuities using meshes that are completely decoupled from them and its robustness in reproducing correct displacement and strain jumps across them, as demonstrated by a patch test. This work thus highlights the potential of DE-FEM for applications to problems characterized by the presence of multiple intersecting discontinuities, posing a valid alternative to traditional FEM and eXtended/Generalized Finite Element (X/GFEM) Methods.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117432"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252400687X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We extend the Discontinuity-Enriched Finite Element Method (DE-FEM) to simulate intersecting discontinuities, such as those encountered in polycrystalline materials, multi-material wedge problems, and branched cracks. The proposed hierarchical enrichment functions capture weak and strong discontinuities at junctions within a single formulation. Several numerical applications to branched cracks and polycrystalline microstructures under both thermal and mechanical loads are presented to demonstrate the proposed method. Results indicate that DE-FEM can accurately capture complex discontinuous primal and gradient fields and attain convergence rates comparable to those of standard FEM using fitted meshes. The main advantages of DE-FEM equipped with the proposed junction enrichment functions lie in the method’s ability to model intersecting discontinuities using meshes that are completely decoupled from them and its robustness in reproducing correct displacement and strain jumps across them, as demonstrated by a patch test. This work thus highlights the potential of DE-FEM for applications to problems characterized by the presence of multiple intersecting discontinuities, posing a valid alternative to traditional FEM and eXtended/Generalized Finite Element (X/GFEM) Methods.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.