The impact of negative gate voltage on neutron-induced single event effects for SiC MOSFETs

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Haibin Wang , Zhichao Nie , Xiaofeng Huang , Jianghao Gu , Zhixin Tan , Hantao Jing , Lihua Mo , Zhiliang Hu , Xueming Wang
{"title":"The impact of negative gate voltage on neutron-induced single event effects for SiC MOSFETs","authors":"Haibin Wang ,&nbsp;Zhichao Nie ,&nbsp;Xiaofeng Huang ,&nbsp;Jianghao Gu ,&nbsp;Zhixin Tan ,&nbsp;Hantao Jing ,&nbsp;Lihua Mo ,&nbsp;Zhiliang Hu ,&nbsp;Xueming Wang","doi":"10.1016/j.microrel.2024.115547","DOIUrl":null,"url":null,"abstract":"<div><div>Atmospheric neutrons can cause failures in SiC power devices, especially in critical components such as SiC MOSFETs. SiC MOSFETs typically employ a negative gate bias in the off-state to prevent unnecessary false turn-on. However, this gate voltage in the off-state can influence the sensitivity to single-event effects (SEEs). In this paper, the impact of negative gate voltage on neutron-induced SEEs in SiC MOSFETs is investigated and analyzed. A high-precision irradiation test system is designed, upon which neutron irradiation experiments have been conducted at various drain-source voltages, each corresponding to two different gate-source voltages. The experimental results demonstrate that negative gate voltage increases the failure rate of SEEs. Based on Sentaurus TCAD, a 2D TCAD model of SiC MOSFET has been established for simulation, and the dependence of single-event gate rupture (SEGR) on negative gate voltage is analyzed, as well as its impact mechanism on single-event burnout (SEB).</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"163 ","pages":"Article 115547"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271424002270","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric neutrons can cause failures in SiC power devices, especially in critical components such as SiC MOSFETs. SiC MOSFETs typically employ a negative gate bias in the off-state to prevent unnecessary false turn-on. However, this gate voltage in the off-state can influence the sensitivity to single-event effects (SEEs). In this paper, the impact of negative gate voltage on neutron-induced SEEs in SiC MOSFETs is investigated and analyzed. A high-precision irradiation test system is designed, upon which neutron irradiation experiments have been conducted at various drain-source voltages, each corresponding to two different gate-source voltages. The experimental results demonstrate that negative gate voltage increases the failure rate of SEEs. Based on Sentaurus TCAD, a 2D TCAD model of SiC MOSFET has been established for simulation, and the dependence of single-event gate rupture (SEGR) on negative gate voltage is analyzed, as well as its impact mechanism on single-event burnout (SEB).
负栅极电压对 SiC MOSFET 中子诱发的单事件效应的影响
大气中的中子会导致碳化硅功率器件发生故障,尤其是碳化硅 MOSFET 等关键元件。SiC MOSFET 通常在关断状态采用负栅极偏置,以防止不必要的误导通。然而,这种关断状态下的栅极电压会影响对单次事件效应(SEE)的灵敏度。本文研究和分析了负栅极电压对 SiC MOSFET 中子诱发 SEE 的影响。设计了一个高精度辐照测试系统,并在该系统上进行了不同漏极-源极电压下的中子辐照实验,每个漏极-源极电压对应两个不同的栅极-源极电压。实验结果表明,负栅极电压会增加 SEE 的失效率。基于 Sentaurus TCAD,建立了 SiC MOSFET 的二维 TCAD 模型进行仿真,分析了单事件栅极破裂(SEGR)与负栅极电压的关系,以及其对单事件烧毁(SEB)的影响机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microelectronics Reliability
Microelectronics Reliability 工程技术-工程:电子与电气
CiteScore
3.30
自引率
12.50%
发文量
342
审稿时长
68 days
期刊介绍: Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged. Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信