Numerical investigation on compaction operations of railway gravel ballast based on DEM-MBD coupling method

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Zhihai Zhang , Hong Xiao , Qiang Liu , Yang Wang , Zhongxia Qian , Mahantesh M. Nadakatti
{"title":"Numerical investigation on compaction operations of railway gravel ballast based on DEM-MBD coupling method","authors":"Zhihai Zhang ,&nbsp;Hong Xiao ,&nbsp;Qiang Liu ,&nbsp;Yang Wang ,&nbsp;Zhongxia Qian ,&nbsp;Mahantesh M. Nadakatti","doi":"10.1016/j.powtec.2024.120428","DOIUrl":null,"url":null,"abstract":"<div><div>Compaction is an essential process in the maintenance of ballasted railways. However, unreasonable operating parameters can reduce compaction efficiency and increase maintenance costs. Previous studies have hardly addressed the impact of compaction on improving the mechanical properties of the ballast bed. In the study, the dynamic equations of compaction are established, and a novel model of compaction based on DEM-MBD coupling method is developed. Furthermore, the parameters of the compaction are optimized from a macro and micro perspective. The research results show that the compaction mainly increases the coordination number of the ballast in the upper area of the ballast shoulder, and the maximum growth rate is 17.45 %. The study reveals that there is no positive correlation between the compacting effect and the excitation frequency. The optimal frequency range for compaction is 25–32 Hz. This study can provide key theoretical support for the parameter selection of on-site compaction for line maintenance.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120428"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010726","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Compaction is an essential process in the maintenance of ballasted railways. However, unreasonable operating parameters can reduce compaction efficiency and increase maintenance costs. Previous studies have hardly addressed the impact of compaction on improving the mechanical properties of the ballast bed. In the study, the dynamic equations of compaction are established, and a novel model of compaction based on DEM-MBD coupling method is developed. Furthermore, the parameters of the compaction are optimized from a macro and micro perspective. The research results show that the compaction mainly increases the coordination number of the ballast in the upper area of the ballast shoulder, and the maximum growth rate is 17.45 %. The study reveals that there is no positive correlation between the compacting effect and the excitation frequency. The optimal frequency range for compaction is 25–32 Hz. This study can provide key theoretical support for the parameter selection of on-site compaction for line maintenance.

Abstract Image

基于 DEM-MBD 耦合方法的铁路碎石道碴压实作业数值研究
压实是维护有砟铁路的重要工序。然而,不合理的操作参数会降低压实效率,增加维护成本。以往的研究几乎没有涉及压实对改善有砟道床力学性能的影响。本研究建立了压实动态方程,并开发了基于 DEM-MBD 耦合方法的新型压实模型。此外,还从宏观和微观角度对压实参数进行了优化。研究结果表明,压实主要增加了道碴肩上部区域道碴的配位数,最大增长率为 17.45%。研究表明,压实效果与激振频率之间不存在正相关关系。压实的最佳频率范围为 25-32 Hz。这项研究可为线路维护现场压实的参数选择提供重要的理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信