Han Gao , Zeshi Chen , Qingjin Zhang , Liangliang Fu , Guangwen Xu , Dingrong Bai
{"title":"Insights into gas-solid flow structures in fluidized beds up to 1600 °C via analysis of gas residence time distributions","authors":"Han Gao , Zeshi Chen , Qingjin Zhang , Liangliang Fu , Guangwen Xu , Dingrong Bai","doi":"10.1016/j.powtec.2024.120426","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates gas residence time distributions (RTDs) in a fluidized bed of Al₂O₃ particles at temperatures ranging from ambient to 1600 °C, focusing on the impact of temperature on gas back-mixing and flow patterns. We find that at low temperatures (up to 300 °C), gas flows in a near-plug flow pattern, represented by narrow RTD curves with early peaks. As temperature increases to 600 °C, the RTD curves broaden, featuring delayed peaks due to bubble breakup and enhanced gas drag. Between 800 °C and 1200 °C, significant deviations from plug flow emerge, driven by stronger interparticle forces and increased gas transfer to the emulsion phase. Interestingly, beyond 1200 °C, the RTD curves shift back toward plug flow, influenced by intensified interparticle forces and physicochemical changes in the bed materials.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120426"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010702","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates gas residence time distributions (RTDs) in a fluidized bed of Al₂O₃ particles at temperatures ranging from ambient to 1600 °C, focusing on the impact of temperature on gas back-mixing and flow patterns. We find that at low temperatures (up to 300 °C), gas flows in a near-plug flow pattern, represented by narrow RTD curves with early peaks. As temperature increases to 600 °C, the RTD curves broaden, featuring delayed peaks due to bubble breakup and enhanced gas drag. Between 800 °C and 1200 °C, significant deviations from plug flow emerge, driven by stronger interparticle forces and increased gas transfer to the emulsion phase. Interestingly, beyond 1200 °C, the RTD curves shift back toward plug flow, influenced by intensified interparticle forces and physicochemical changes in the bed materials.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.