Extraction of asymptotic edges of microcracks in silicon nitride bearings based on adaptive nonlocal mean filtering and iterative tracking algorithm

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Xiang Ning , Lingfeng Yu , Xianqi Liao , Zengguang Lai , Hu Cheng , Dahai Liao
{"title":"Extraction of asymptotic edges of microcracks in silicon nitride bearings based on adaptive nonlocal mean filtering and iterative tracking algorithm","authors":"Xiang Ning ,&nbsp;Lingfeng Yu ,&nbsp;Xianqi Liao ,&nbsp;Zengguang Lai ,&nbsp;Hu Cheng ,&nbsp;Dahai Liao","doi":"10.1016/j.measurement.2024.116215","DOIUrl":null,"url":null,"abstract":"<div><div>The gradual change edge of the Si<sub>3</sub>N<sub>4</sub> bearing roller microcracks with decreasing gray gradients are difficult to be extracted by threshold segmentation. The method for extracting the gradual change edge of Si<sub>3</sub>N<sub>4</sub> bearing roller microcracks using adaptive non-local mean filtering and an iterative tracking algorithm is proposed. Widely distributed, large-span, dense noise is eliminated from the gradual change edges of microcracks in Si<sub>3</sub>N<sub>4</sub> bearing roller microcrack images. In the iterative expansion process of microcrack defect shape, the gradual change edge pixel of microcrack is accurately tracked. The Si<sub>3</sub>N<sub>4</sub> bearing roller microcrack image is enhanced by adaptive non-local mean filtering. The following are the experimental findings: The PSNR and SNR reach 38.12 dB and 40.94 dB, respectively. The microcrack gradual change edge pixels can be extracted with an edge coverage rate of 92.5 % and an accuracy of 93.8 % using the iterative tracking algorithm for Si<sub>3</sub>N<sub>4</sub> bearing roller microcrack images.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"242 ","pages":"Article 116215"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124021006","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The gradual change edge of the Si3N4 bearing roller microcracks with decreasing gray gradients are difficult to be extracted by threshold segmentation. The method for extracting the gradual change edge of Si3N4 bearing roller microcracks using adaptive non-local mean filtering and an iterative tracking algorithm is proposed. Widely distributed, large-span, dense noise is eliminated from the gradual change edges of microcracks in Si3N4 bearing roller microcrack images. In the iterative expansion process of microcrack defect shape, the gradual change edge pixel of microcrack is accurately tracked. The Si3N4 bearing roller microcrack image is enhanced by adaptive non-local mean filtering. The following are the experimental findings: The PSNR and SNR reach 38.12 dB and 40.94 dB, respectively. The microcrack gradual change edge pixels can be extracted with an edge coverage rate of 92.5 % and an accuracy of 93.8 % using the iterative tracking algorithm for Si3N4 bearing roller microcrack images.
基于自适应非局部均值滤波和迭代跟踪算法的氮化硅轴承微裂纹渐近边缘提取方法
阈值分割法难以提取灰度梯度递减的 Si3N4 轴承滚子微裂纹渐变边缘。本文提出了利用自适应非局部均值滤波和迭代跟踪算法提取 Si3N4 轴承滚子微裂纹渐变边缘的方法。消除了 Si3N4 轴承滚子微裂纹图像中微裂纹渐变边缘分布广、跨度大、密度高的噪声。在微裂纹缺陷形状的迭代扩展过程中,精确跟踪了微裂纹的渐变边缘像素。通过自适应非局部均值滤波增强 Si3N4 轴承滚子微裂纹图像。实验结果如下:PSNR 和 SNR 分别达到 38.12 dB 和 40.94 dB。使用迭代跟踪算法提取 Si3N4 轴承滚子微裂纹图像的微裂纹渐变边缘像素,边缘覆盖率达到 92.5%,准确率达到 93.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信