{"title":"Star-factors with large components, fractional k-extendability and spectral radius in graphs","authors":"Sizhong Zhou , Hongxia Liu","doi":"10.1016/j.dam.2024.10.018","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph, and let <span><math><mi>m</mi></math></span> and <span><math><mi>k</mi></math></span> be two integers with <span><math><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. A <span><math><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>j</mi></mrow></msub><mo>:</mo><mi>m</mi><mo>≤</mo><mi>j</mi><mo>≤</mo><mn>2</mn><mi>m</mi><mo>}</mo></mrow></math></span>-factor of <span><math><mi>G</mi></math></span> is a spanning subgraph of <span><math><mi>G</mi></math></span>, in which every component is isomorphic to a member in <span><math><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>j</mi></mrow></msub><mo>:</mo><mi>m</mi><mo>≤</mo><mi>j</mi><mo>≤</mo><mn>2</mn><mi>m</mi><mo>}</mo></mrow></math></span>. A graph <span><math><mi>G</mi></math></span> is fractional <span><math><mi>k</mi></math></span>-extendable if every <span><math><mi>k</mi></math></span>-matching in <span><math><mi>G</mi></math></span> can be extended to a fractional perfect matching of <span><math><mi>G</mi></math></span>. In this paper, we first establish a lower bound on the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span> to guarantee that <span><math><mi>G</mi></math></span> has a <span><math><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>j</mi></mrow></msub><mo>:</mo><mi>m</mi><mo>≤</mo><mi>j</mi><mo>≤</mo><mn>2</mn><mi>m</mi><mo>}</mo></mrow></math></span>-factor, where <span><math><mrow><mi>a</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>. Then we determine a lower bound on the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span> to ensure that <span><math><mi>G</mi></math></span> is fractional <span><math><mi>k</mi></math></span>-extendable, where <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 402-411"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004517","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a graph, and let and be two integers with and . A -factor of is a spanning subgraph of , in which every component is isomorphic to a member in . A graph is fractional -extendable if every -matching in can be extended to a fractional perfect matching of . In this paper, we first establish a lower bound on the -spectral radius of to guarantee that has a -factor, where . Then we determine a lower bound on the -spectral radius of to ensure that is fractional -extendable, where .
让 G 是一个图,让 m 和 k 是两个整数,其中 m≥2 和 k≥1。G 的一个 {K1,j:m≤j≤2m} 因子是 G 的一个跨子图,其中每个分量都与 {K1,j:m≤j≤2m} 中的一个成员同构。本文首先建立了 G 的 Aa 谱半径下限,以保证 G 具有 {K1,j:m≤j≤2m} 因子,其中 a∈{0,1}。然后,我们确定 G 的 Aα 谱半径下限,以确保 G 是分数 k 可扩展的,其中 α∈[0,1)。
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.