{"title":"Versatile microwave photonic filter based on 100-channel brillouin raman fiber laser","authors":"Zhi-Yong Yau, Yu-Gang Shee, Eng-Hock Lim, Zuxing Zhang, Mohd Adzir Mahdi","doi":"10.1007/s11082-024-07739-z","DOIUrl":null,"url":null,"abstract":"<div><p>Microwave photonic filters (MPF) are among the most crucial components required for meeting the demands of high-speed and high-frequency signal processing of modern telecommunication systems. For the first time, here, we propose an MPF based on a double wavelength spacing Brillouin-Raman fiber laser (BRFL) to realize a versatile bandpass filter. The proposed setup generated 100 optical taps output with ~ 20 GHz spacings as the light source of the MPF. A dispersive medium of 5 km long single mode fiber and 3.46 km long dispersion compensating fiber were used to characterize the effect of the time delay on the central frequency of the MPF passband. A reconfigurable 3-dB bandwidth from 150 MHz to 1.12 GHz centered around 10.3 GHz is achievable by varying the BRFL optical channel numbers using 10 to 100 optical taps with 20 GHz spacing. The 3-dB bandwidth and Q-factor of the proposed MPF were investigated experimentally and found to be in good agreement with simulation, demonstrating the potential of the BRFL as a laser source for the realization of flexible and versatile radio frequency transversal filters with potentially reduced cost and complexity.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-07739-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Microwave photonic filters (MPF) are among the most crucial components required for meeting the demands of high-speed and high-frequency signal processing of modern telecommunication systems. For the first time, here, we propose an MPF based on a double wavelength spacing Brillouin-Raman fiber laser (BRFL) to realize a versatile bandpass filter. The proposed setup generated 100 optical taps output with ~ 20 GHz spacings as the light source of the MPF. A dispersive medium of 5 km long single mode fiber and 3.46 km long dispersion compensating fiber were used to characterize the effect of the time delay on the central frequency of the MPF passband. A reconfigurable 3-dB bandwidth from 150 MHz to 1.12 GHz centered around 10.3 GHz is achievable by varying the BRFL optical channel numbers using 10 to 100 optical taps with 20 GHz spacing. The 3-dB bandwidth and Q-factor of the proposed MPF were investigated experimentally and found to be in good agreement with simulation, demonstrating the potential of the BRFL as a laser source for the realization of flexible and versatile radio frequency transversal filters with potentially reduced cost and complexity.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.