Facilitating phenotyping from clinical texts: the medkit library.

Antoine Neuraz, Ghislain Vaillant, Camila Arias, Olivier Birot, Kim-Tam Huynh, Thibaut Fabacher, Alice Rogier, Nicolas Garcelon, Ivan Lerner, Bastien Rance, Adrien Coulet
{"title":"Facilitating phenotyping from clinical texts: the medkit library.","authors":"Antoine Neuraz, Ghislain Vaillant, Camila Arias, Olivier Birot, Kim-Tam Huynh, Thibaut Fabacher, Alice Rogier, Nicolas Garcelon, Ivan Lerner, Bastien Rance, Adrien Coulet","doi":"10.1093/bioinformatics/btae681","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Phenotyping consists in applying algorithms to identify individuals associated with a specific, potentially complex, trait or condition, typically out of a collection of Electronic Health Records (EHRs). Because a lot of the clinical information of EHRs are lying in texts, phenotyping from text takes an important role in studies that rely on the secondary use of EHRs. However, the heterogeneity and highly specialized aspect of both the content and form of clinical texts makes this task particularly tedious, and is the source of time and cost constraints in observational studies.</p><p><strong>Results: </strong>To facilitate the development, evaluation and reproducibility of phenotyping pipelines, we developed an open-source Python library named medkit. It enables composing data processing pipelines made of easy-to-reuse software bricks, named medkit operations. In addition to the core of the library, we share the operations and pipelines we already developed and invite the phenotyping community for their reuse and enrichment.</p><p><strong>Availability and implementation: </strong>medkit is available at https://github.com/medkit-lib/medkit.</p><p><strong>Supplementary information: </strong>Documentation, examples and tutorials are available at https://medkit-lib.org/.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: Phenotyping consists in applying algorithms to identify individuals associated with a specific, potentially complex, trait or condition, typically out of a collection of Electronic Health Records (EHRs). Because a lot of the clinical information of EHRs are lying in texts, phenotyping from text takes an important role in studies that rely on the secondary use of EHRs. However, the heterogeneity and highly specialized aspect of both the content and form of clinical texts makes this task particularly tedious, and is the source of time and cost constraints in observational studies.

Results: To facilitate the development, evaluation and reproducibility of phenotyping pipelines, we developed an open-source Python library named medkit. It enables composing data processing pipelines made of easy-to-reuse software bricks, named medkit operations. In addition to the core of the library, we share the operations and pipelines we already developed and invite the phenotyping community for their reuse and enrichment.

Availability and implementation: medkit is available at https://github.com/medkit-lib/medkit.

Supplementary information: Documentation, examples and tutorials are available at https://medkit-lib.org/.

促进从临床文本中进行表型分析:medkit 库。
摘要:表型分析包括应用算法来识别与特定、可能复杂的性状或病症相关的个体,通常是从电子健康记录(EHR)集合中识别出来的。由于电子健康记录中的大量临床信息都是文本信息,因此在依赖电子健康记录二次使用的研究中,从文本中进行表型分析起着重要作用。然而,临床文本的内容和形式都具有异质性和高度专业性,这使得这项工作特别繁琐,也是观察性研究中时间和成本限制的根源:为了促进表型分析管道的开发、评估和可重复性,我们开发了一个名为 medkit 的开源 Python 库。该库由易于重用的软件砖组成,名为 medkit 操作。除了库的核心部分,我们还分享了已经开发的操作和管道,并邀请表型分析社区重用和丰富这些操作和管道:文档、示例和教程请访问 https://medkit-lib.org/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信