Engineered bacterial lipoate protein ligase A (lplA) restores lipoylation in cell models of lipoylation deficiency.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nolan Bick, Margaret Dreishpoon, Ava Perry, Anna Rogachevskaya, Sylvia S Bottomley, Mark D Fleming, Sarah Ducamp, Peter Tsvetkov
{"title":"Engineered bacterial lipoate protein ligase A (lplA) restores lipoylation in cell models of lipoylation deficiency.","authors":"Nolan Bick, Margaret Dreishpoon, Ava Perry, Anna Rogachevskaya, Sylvia S Bottomley, Mark D Fleming, Sarah Ducamp, Peter Tsvetkov","doi":"10.1016/j.jbc.2024.107995","DOIUrl":null,"url":null,"abstract":"<p><p>Protein lipoylation, a vital lysine posttranslational modification (PTM), plays a crucial role in the function of key mitochondrial TCA cycle enzymatic complexes. In eukaryotes, lipoyl PTM synthesis occurs exclusively through de novo pathways, relying on lipoyl synthesis/transfer enzymes, dependent upon mitochondrial fatty acid and Fe-S cluster biosynthesis. Dysregulation in any of these pathways leads to diminished cellular lipoylation. Efficient restoration of lipoylation in lipoylation deficiency cell states using either chemical or genetic approaches has been challenging due to pathway complexity and multiple upstream regulators. To address this challenge, we explored the possibility that a bacterial lipoate protein ligase (lplA) enzyme, that can salvage free lipoic acid bypassing the dependency on de novo synthesis, could be engineered to be functional in human cells. Overexpression of the engineered lplA in lipoylation null cells restored lipoylation levels, cellular respiration, and growth in low glucose conditions. Engineered lplA restored lipoylation in all tested lipoylation null cell models, mimicking defects in mitochondrial fatty acid synthesis (MECR KO), Fe-S cluster biosynthesis (BOLA3 KO), and specific lipoylation regulating enzymes (FDX1, LIAS and LIPT1 KOs). Furthermore, we describe a patient with a homozygous c.212C>T variant LIPT1 with a previously uncharacterized syndromic congenital sideroblastic anemia. K562 erythroleukemia cells engineered to harbor this missense LIPT1 allele recapitulate the lipoylation deficient phenotype and exhibit impaired proliferation in low glucose that is completely restored by engineered lplA. This synthetic approach offers a potential therapeutic strategy for treating lipoylation disorders.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107995"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107995","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein lipoylation, a vital lysine posttranslational modification (PTM), plays a crucial role in the function of key mitochondrial TCA cycle enzymatic complexes. In eukaryotes, lipoyl PTM synthesis occurs exclusively through de novo pathways, relying on lipoyl synthesis/transfer enzymes, dependent upon mitochondrial fatty acid and Fe-S cluster biosynthesis. Dysregulation in any of these pathways leads to diminished cellular lipoylation. Efficient restoration of lipoylation in lipoylation deficiency cell states using either chemical or genetic approaches has been challenging due to pathway complexity and multiple upstream regulators. To address this challenge, we explored the possibility that a bacterial lipoate protein ligase (lplA) enzyme, that can salvage free lipoic acid bypassing the dependency on de novo synthesis, could be engineered to be functional in human cells. Overexpression of the engineered lplA in lipoylation null cells restored lipoylation levels, cellular respiration, and growth in low glucose conditions. Engineered lplA restored lipoylation in all tested lipoylation null cell models, mimicking defects in mitochondrial fatty acid synthesis (MECR KO), Fe-S cluster biosynthesis (BOLA3 KO), and specific lipoylation regulating enzymes (FDX1, LIAS and LIPT1 KOs). Furthermore, we describe a patient with a homozygous c.212C>T variant LIPT1 with a previously uncharacterized syndromic congenital sideroblastic anemia. K562 erythroleukemia cells engineered to harbor this missense LIPT1 allele recapitulate the lipoylation deficient phenotype and exhibit impaired proliferation in low glucose that is completely restored by engineered lplA. This synthetic approach offers a potential therapeutic strategy for treating lipoylation disorders.

工程细菌脂酸蛋白连接酶 A(lplA)可在脂酰化缺乏的细胞模型中恢复脂酰化。
蛋白质脂酰化是一种重要的赖氨酸翻译后修饰(PTM),对线粒体 TCA 循环关键酶复合物的功能起着至关重要的作用。在真核生物中,脂酰基 PTM 的合成完全通过从头开始的途径进行,依赖于线粒体脂肪酸和 Fe-S 簇的生物合成的脂酰基合成/转移酶。其中任何一种途径的失调都会导致细胞脂酰化的减少。由于脂酰化途径的复杂性和多种上游调控因子,使用化学或遗传方法有效恢复脂酰化缺乏细胞状态的脂酰化一直是一项挑战。为了应对这一挑战,我们探索了一种可能性,即可以设计一种细菌脂酸蛋白连接酶(lplA),使其在人体细胞中发挥作用,从而绕过对从头合成的依赖,挽救游离脂酸。在脂肪酰化无效的细胞中过表达改造的 lplA 可恢复脂肪酰化水平、细胞呼吸和低糖条件下的生长。在所有测试过的脂肪酰化无效细胞模型中,工程lplA都能恢复脂肪酰化,模拟线粒体脂肪酸合成(MECR KO)、Fe-S簇生物合成(BOLA3 KO)和特定脂肪酰化调节酶(FDX1、LIAS和LIPT1 KO)的缺陷。此外,我们还描述了一名患有同型c.212C>T变异LIPT1的患者,该患者患有之前未曾描述过的综合征性先天性红细胞性贫血。经改造的 K562 红细胞白血病细胞携带这种错义 LIPT1 等位基因,再现了脂肪酰化缺陷表型,并表现出低糖增殖障碍,而改造的 lplA 能完全恢复这种障碍。这种合成方法为治疗脂肪酰化障碍提供了一种潜在的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信