Kangan Li , Antonio Rodríguez-Ferran , Guglielmo Scovazzi
{"title":"Crack branching and merging simulations with the shifted fracture method","authors":"Kangan Li , Antonio Rodríguez-Ferran , Guglielmo Scovazzi","doi":"10.1016/j.cma.2024.117528","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a relatively simple and mesh-independent approach to model crack branching and merging using the Shifted Fracture Method (SFM), within the class of Shifted Boundary Methods. The proposed method achieves mesh independency by accurately accounting for the area of the fracture surface, in contrast to traditional element-deletion/node-release techniques. In the SFM, the <em>true</em> fracture is embedded into the computational grid, but the fracture interface conditions are modified (shifted) by means of Taylor expansions to the <em>surrogate</em> fracture composed of full edges/faces in two/three dimensions. This avoids numerical integration on cut elements, so that the data structures and geometrical treatment of cut elements are simple, while mesh-independent results and accurate fracture approximations are still maintained. We demonstrate the capabilities of the proposed approach in a number of prototypical numerical experiments.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117528"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007825","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a relatively simple and mesh-independent approach to model crack branching and merging using the Shifted Fracture Method (SFM), within the class of Shifted Boundary Methods. The proposed method achieves mesh independency by accurately accounting for the area of the fracture surface, in contrast to traditional element-deletion/node-release techniques. In the SFM, the true fracture is embedded into the computational grid, but the fracture interface conditions are modified (shifted) by means of Taylor expansions to the surrogate fracture composed of full edges/faces in two/three dimensions. This avoids numerical integration on cut elements, so that the data structures and geometrical treatment of cut elements are simple, while mesh-independent results and accurate fracture approximations are still maintained. We demonstrate the capabilities of the proposed approach in a number of prototypical numerical experiments.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.