New Antimicrobial Materials Based on Plasticized Polyvinyl Chloride for Urinary Catheters: Preparation and Testing.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2024-10-29 DOI:10.3390/polym16213028
Iuliana Mihaela Deleanu, Elena Grosu, Anton Ficai, Lia Mara Ditu, Ludmila Motelica, Ovidiu-Cristian Oprea, Gratiela Gradisteanu Pircalabioru, Maria Sonmez, Cristina Busuioc, Robert Ciocoiu, Vasile Iulian Antoniac
{"title":"New Antimicrobial Materials Based on Plasticized Polyvinyl Chloride for Urinary Catheters: Preparation and Testing.","authors":"Iuliana Mihaela Deleanu, Elena Grosu, Anton Ficai, Lia Mara Ditu, Ludmila Motelica, Ovidiu-Cristian Oprea, Gratiela Gradisteanu Pircalabioru, Maria Sonmez, Cristina Busuioc, Robert Ciocoiu, Vasile Iulian Antoniac","doi":"10.3390/polym16213028","DOIUrl":null,"url":null,"abstract":"<p><p>Given the constant increased number of nosocomial infections in hospitals, especially associated with prolonged usage of inserted medical devices, our work aims to ameliorate clinical experience and promote faster healing of patients undergoing urinary catheterization by improving the properties of medical devices materials. Within this research, nine different composites were prepared based on polyvinyl chloride, using three different plasticizers (di-(2-ethylhexyl) phthalate, Proviplast 2646, and Proviplast 2755), and two different antimicrobial additives containing silver nanoparticles. The prepared materials were analyzed, and their physicochemical properties were determined: water absorption, relative density, plasticizer migration, hydrophobicity/hydrophilicity by contact angle measurement, Shore A hardness, tensile strength, and elongation at break. Structure and morphology were also investigated by means of FTIR, SEM, and EDX analyses, and thermal (TG-DSC) and biological properties were evaluated. The most important aspects of obtained results are showing that plasticizer migration was significantly reduced (to almost zero) and that the usage of antimicrobial additives improved the materials' biocompatibility. Thus, based on the concluded favorable properties, the obtained materials can be further used for catheter development. Pressure-flow studies for different sizes and configurations are the next steps toward advanced in vivo and clinical trials.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548089/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213028","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Given the constant increased number of nosocomial infections in hospitals, especially associated with prolonged usage of inserted medical devices, our work aims to ameliorate clinical experience and promote faster healing of patients undergoing urinary catheterization by improving the properties of medical devices materials. Within this research, nine different composites were prepared based on polyvinyl chloride, using three different plasticizers (di-(2-ethylhexyl) phthalate, Proviplast 2646, and Proviplast 2755), and two different antimicrobial additives containing silver nanoparticles. The prepared materials were analyzed, and their physicochemical properties were determined: water absorption, relative density, plasticizer migration, hydrophobicity/hydrophilicity by contact angle measurement, Shore A hardness, tensile strength, and elongation at break. Structure and morphology were also investigated by means of FTIR, SEM, and EDX analyses, and thermal (TG-DSC) and biological properties were evaluated. The most important aspects of obtained results are showing that plasticizer migration was significantly reduced (to almost zero) and that the usage of antimicrobial additives improved the materials' biocompatibility. Thus, based on the concluded favorable properties, the obtained materials can be further used for catheter development. Pressure-flow studies for different sizes and configurations are the next steps toward advanced in vivo and clinical trials.

用于导尿管的基于塑化聚氯乙烯的新型抗菌材料:制备和测试。
鉴于医院中的院内感染数量不断增加,特别是与长期使用插入式医疗器械有关,我们的工作旨在通过改善医疗器械材料的性能,改善临床经验,促进导尿患者的快速康复。这项研究以聚氯乙烯为基础,使用三种不同的增塑剂(邻苯二甲酸二(2-乙基己酯)、Proviplast 2646 和 Proviplast 2755)和两种不同的含纳米银的抗菌添加剂,制备了九种不同的复合材料。对制备的材料进行了分析,并测定了它们的理化性质:吸水性、相对密度、增塑剂迁移性、通过接触角测量法测定的疏水性/亲水性、肖氏硬度、拉伸强度和断裂伸长率。此外,还通过傅立叶变换红外光谱、扫描电子显微镜和乙二胺四乙酸氧化物分析法对结构和形态进行了研究,并对热性能(TG-DSC)和生物特性进行了评估。研究结果最重要的一点是,增塑剂迁移显著减少(几乎为零),抗菌添加剂的使用提高了材料的生物相容性。因此,基于所得出的有利特性,所获得的材料可进一步用于导管开发。下一步将对不同尺寸和配置的导管进行压力-流量研究,以推进体内试验和临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信