Aeration-Free Photo-Fenton-Like Reaction Mediated by Heterojunction Photocatalyst toward Efficient Degradation of Organic Pollutants.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yan Wang, Lianxin Li, Puyang Zhou, Yu Gan, Weipeng Liu, Yiwen Wang, Yilin Deng, Hongping Li, Meng Xie, Yuanguo Xu
{"title":"Aeration-Free Photo-Fenton-Like Reaction Mediated by Heterojunction Photocatalyst toward Efficient Degradation of Organic Pollutants.","authors":"Yan Wang, Lianxin Li, Puyang Zhou, Yu Gan, Weipeng Liu, Yiwen Wang, Yilin Deng, Hongping Li, Meng Xie, Yuanguo Xu","doi":"10.1002/anie.202419680","DOIUrl":null,"url":null,"abstract":"<p><p>The regulation of peroxymonosulfate (PMS) activation by photo-assisted heterogeneous catalysis is under in-depth investigation with potential as a replaceable advanced oxidation process in water purification, yet it remains a significant challenge. Herein, we demonstrate a strategy to construct polyethylene glycol (PEG) well-coupled dual-defect V<sub>O</sub>-M-Co<sub>3</sub>O<sub>4</sub>@CN<sub>x</sub> S-scheme heterojunction to degrade organic pollutants without aeration, which dramatically provides abundant active sites, excellent photo-thermal property, and distinct charge transport pathway for PMS activation. The degradation rate of V<sub>O</sub>-M-Co<sub>3</sub>O<sub>4</sub>@CN<sub>x</sub> in anaerobic conditions shows a higher efficient rate (4.58 min<sup>-1</sup> g<sup>-2</sup>) than in aerobic conditions (1.67 min<sup>-1</sup> g<sup>-2</sup>). Experimental evidence reveals that V<sub>O</sub>-M-Co<sub>3</sub>O<sub>4</sub>@CN<sub>x</sub> promotes more rapid redox conversion of photoexcited electrons induced by defects with PMS under anaerobic conditions compared to aerobic conditions. Additionally, in situ experiments and DFT provide mechanistic insights into the regulation pathway of PMS activation via synergistic defect-induced electron, revealing the competitive effect between O<sub>2</sub> and PMS over V<sub>O</sub>-M-Co<sub>3</sub>O<sub>4</sub>@CN<sub>x</sub> during the reaction process. The continuous flow reactor and flow cytometry results demonstrated that the V<sub>O</sub>-M-Co<sub>3</sub>O<sub>4</sub>@CN<sub>x</sub>/PMS/Vis system has remarkably enhanced stability and purification capability for removing organic pollutants. This work provides valuable insights into regulating the heterologous catalysis oxidation process without aeration through the photoexcitation synergistic PMS activation.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202419680"},"PeriodicalIF":16.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202419680","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The regulation of peroxymonosulfate (PMS) activation by photo-assisted heterogeneous catalysis is under in-depth investigation with potential as a replaceable advanced oxidation process in water purification, yet it remains a significant challenge. Herein, we demonstrate a strategy to construct polyethylene glycol (PEG) well-coupled dual-defect VO-M-Co3O4@CNx S-scheme heterojunction to degrade organic pollutants without aeration, which dramatically provides abundant active sites, excellent photo-thermal property, and distinct charge transport pathway for PMS activation. The degradation rate of VO-M-Co3O4@CNx in anaerobic conditions shows a higher efficient rate (4.58 min-1 g-2) than in aerobic conditions (1.67 min-1 g-2). Experimental evidence reveals that VO-M-Co3O4@CNx promotes more rapid redox conversion of photoexcited electrons induced by defects with PMS under anaerobic conditions compared to aerobic conditions. Additionally, in situ experiments and DFT provide mechanistic insights into the regulation pathway of PMS activation via synergistic defect-induced electron, revealing the competitive effect between O2 and PMS over VO-M-Co3O4@CNx during the reaction process. The continuous flow reactor and flow cytometry results demonstrated that the VO-M-Co3O4@CNx/PMS/Vis system has remarkably enhanced stability and purification capability for removing organic pollutants. This work provides valuable insights into regulating the heterologous catalysis oxidation process without aeration through the photoexcitation synergistic PMS activation.

以异质结光催化剂为介导的无曝气类光芬顿反应,实现有机污染物的高效降解。
光助异相催化对过氧单硫酸盐(PMS)活化的调控正在深入研究之中,有望成为一种可替代的水净化高级氧化工艺,但这仍然是一个重大挑战。在本文中,我们展示了一种构建聚乙二醇(PEG)阱耦合双缺陷 VO-M-Co3O4@CNx S 型异质结的策略,该策略无需曝气即可降解有机污染物,为 PMS 的活化提供了丰富的活性位点、优异的光热性能和独特的电荷传输途径。VO-M-Co3O4@CNx 在厌氧条件下的降解率(4.58 min-1 g-2)高于有氧条件下的降解率(1.67 min-1 g-2)。实验证据表明,与有氧条件相比,VO-M-Co3O4@CNx 在厌氧条件下能更快地促进由 PMS 缺陷诱导的光激发电子的氧化还原转化。此外,原位实验和 DFT 从机理上揭示了 PMS 通过协同缺陷诱导电子活化的调节途径,揭示了反应过程中 O2 和 PMS 对 VO-M-Co3O4@CNx 的竞争效应。连续流反应器和流式细胞仪结果表明,VO-M-Co3O4@CNx/PMS/Vis 系统具有显著增强的稳定性和净化能力,可去除有机污染物。这项工作为通过光激发协同 PMS 激活来调节无曝气的异源催化氧化过程提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信