Krongkarn Sirinukunwattana , Christian Klein , Paul F.A. Clarke , Gilles Marcou , Laurence Meyer , Nicolas Collongues , Jérôme de Sèze , Petra Hellwig , Christine Patte-Mensah , Youssef El Khoury , Ayikoé-Guy Mensah-Nyagan
{"title":"Assessment of the concomitant action of XBD173 and interferon β in a mouse model of multiple sclerosis using infrared marker bands","authors":"Krongkarn Sirinukunwattana , Christian Klein , Paul F.A. Clarke , Gilles Marcou , Laurence Meyer , Nicolas Collongues , Jérôme de Sèze , Petra Hellwig , Christine Patte-Mensah , Youssef El Khoury , Ayikoé-Guy Mensah-Nyagan","doi":"10.1016/j.saa.2024.125390","DOIUrl":null,"url":null,"abstract":"<div><div>Disease modifying therapies including interferon-β (IFNβ) effectively counteract the inflammatory component in relapsing-remitting multiple sclerosis (RRMS) but this action, generally associated with severe side effects, does not prevent axonal/neuronal damages. Hence, axonal neuroprotection, which is pivotal for MS effective treatment, remains a difficult clinical challenge. Growing evidence suggested as promising candidate for neuroprotection, Emapunil (AC-5216) or XBD173, a ligand of the mitochondrial translocator protein highly expressed in glial cells and neurons. Indeed, elegant studies previously showed that low and well tolerated doses of XBD173 efficiently improved clinical symptoms and neuropathological markers in MS mice. Here we combined clinical scoring in vivo with Fourier transform infrared spectroscopy of sera samples to investigate the hypothesis that the concomitant treatment of RRMS mice with low doses of IFNβ and XBD173 may increase their beneficial effects against MS symptoms and additionally decrease IFNβ-induced side effects. Our results show a significant alteration of the composition of serum protein and lipids in the spectra of the sera of RRMS mice. While the signature of proteins remains altered upon treatment, the signature of lipids is recovered comparatively well with 20 kIU IFNβ and upon concomitant treatment with a low dose of XBD173 (10 mg/kg) and IFNβ (10 kIU), but not with 10 kIU of IFNβ alone. The concomitant therapy with XBD173 (10 mg/kg) and IFNβ (10 kIU), devoid of side effects, exhibited at least equal or even better efficacy than IFNβ (20 kIU) treatment against RRMS symptoms.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"327 ","pages":"Article 125390"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524015567","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Disease modifying therapies including interferon-β (IFNβ) effectively counteract the inflammatory component in relapsing-remitting multiple sclerosis (RRMS) but this action, generally associated with severe side effects, does not prevent axonal/neuronal damages. Hence, axonal neuroprotection, which is pivotal for MS effective treatment, remains a difficult clinical challenge. Growing evidence suggested as promising candidate for neuroprotection, Emapunil (AC-5216) or XBD173, a ligand of the mitochondrial translocator protein highly expressed in glial cells and neurons. Indeed, elegant studies previously showed that low and well tolerated doses of XBD173 efficiently improved clinical symptoms and neuropathological markers in MS mice. Here we combined clinical scoring in vivo with Fourier transform infrared spectroscopy of sera samples to investigate the hypothesis that the concomitant treatment of RRMS mice with low doses of IFNβ and XBD173 may increase their beneficial effects against MS symptoms and additionally decrease IFNβ-induced side effects. Our results show a significant alteration of the composition of serum protein and lipids in the spectra of the sera of RRMS mice. While the signature of proteins remains altered upon treatment, the signature of lipids is recovered comparatively well with 20 kIU IFNβ and upon concomitant treatment with a low dose of XBD173 (10 mg/kg) and IFNβ (10 kIU), but not with 10 kIU of IFNβ alone. The concomitant therapy with XBD173 (10 mg/kg) and IFNβ (10 kIU), devoid of side effects, exhibited at least equal or even better efficacy than IFNβ (20 kIU) treatment against RRMS symptoms.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.