68-channel neural signal processing system-on-chip with integrated feature extraction, compression, and hardware accelerators for neuroprosthetics in 22 nm FDSOI.

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI:10.3389/fnins.2024.1432750
Liyuan Guo, Annika Weiße, Seyed Mohammad Ali Zeinolabedin, Franz Marcus Schüffny, Marco Stolba, Qier Ma, Zhuo Wang, Stefan Scholze, Andreas Dixius, Marc Berthel, Johannes Partzsch, Dennis Walter, Georg Ellguth, Sebastian Höppner, Richard George, Christian Mayr
{"title":"68-channel neural signal processing system-on-chip with integrated feature extraction, compression, and hardware accelerators for neuroprosthetics in 22 nm FDSOI.","authors":"Liyuan Guo, Annika Weiße, Seyed Mohammad Ali Zeinolabedin, Franz Marcus Schüffny, Marco Stolba, Qier Ma, Zhuo Wang, Stefan Scholze, Andreas Dixius, Marc Berthel, Johannes Partzsch, Dennis Walter, Georg Ellguth, Sebastian Höppner, Richard George, Christian Mayr","doi":"10.3389/fnins.2024.1432750","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Multi-channel electrophysiology systems for recording of neuronal activity face significant data throughput limitations, hampering real-time, data-informed experiments. These limitations impact both experimental neurobiology research and next-generation neuroprosthetics.</p><p><strong>Methods: </strong>We present a novel solution that leverages the high integration density of 22nm fully-depleted silicon-on-insulator technology to address these challenges. The proposed highly integrated programmable System-on-Chip (SoC) comprises 68-channel 0.41 μW/Ch recording frontends, spike detectors, 16-channel 0.87-4.39 μW/Ch action potentials and 8-channel 0.32 μW/Ch local field potential codecs, as well as a multiply-accumulate-assisted power-efficient processor operating at 25 MHz (5.19 μW/MHz). The system supports on-chip training processes for compression, training, and inference for neural spike sorting. The spike sorting achieves an average accuracy of 91.48 or 94.12% depending on the utilized features. The proposed programmable SoC is optimized for reduced area (9 mm<sup>2</sup>) and power. On-chip processing and compression capabilities free up the data bottlenecks in data transmission (up to 91% space saving ratio), and moreover enable a fully autonomous yet flexible processor-driven operation.</p><p><strong>Discussion: </strong>Combined, these design considerations overcome data-bottlenecks by allowing on-chip feature extraction and subsequent compression.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"18 ","pages":"1432750"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2024.1432750","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Multi-channel electrophysiology systems for recording of neuronal activity face significant data throughput limitations, hampering real-time, data-informed experiments. These limitations impact both experimental neurobiology research and next-generation neuroprosthetics.

Methods: We present a novel solution that leverages the high integration density of 22nm fully-depleted silicon-on-insulator technology to address these challenges. The proposed highly integrated programmable System-on-Chip (SoC) comprises 68-channel 0.41 μW/Ch recording frontends, spike detectors, 16-channel 0.87-4.39 μW/Ch action potentials and 8-channel 0.32 μW/Ch local field potential codecs, as well as a multiply-accumulate-assisted power-efficient processor operating at 25 MHz (5.19 μW/MHz). The system supports on-chip training processes for compression, training, and inference for neural spike sorting. The spike sorting achieves an average accuracy of 91.48 or 94.12% depending on the utilized features. The proposed programmable SoC is optimized for reduced area (9 mm2) and power. On-chip processing and compression capabilities free up the data bottlenecks in data transmission (up to 91% space saving ratio), and moreover enable a fully autonomous yet flexible processor-driven operation.

Discussion: Combined, these design considerations overcome data-bottlenecks by allowing on-chip feature extraction and subsequent compression.

68 通道神经信号处理片上系统,集成了特征提取、压缩和硬件加速器,用于 22 纳米 FDSOI 神经假肢。
介绍:用于记录神经元活动的多通道电生理学系统面临着数据吞吐量的严重限制,妨碍了实时、数据知情的实验。这些限制既影响了神经生物学实验研究,也影响了下一代神经义肢:我们提出了一种新颖的解决方案,利用 22 纳米全耗尽型绝缘体上硅技术的高集成度来应对这些挑战。我们提出的高集成度可编程片上系统(SoC)包括 68 通道 0.41 μW/Ch 记录前端、尖峰检测器、16 通道 0.87-4.39 μW/Ch 动作电位和 8 通道 0.32 μW/Ch 局部场电位编解码器,以及一个工作频率为 25 MHz(5.19 μW/MHz)的乘法累加辅助高能效处理器。该系统支持用于神经尖峰排序的压缩、训练和推理的片上训练流程。根据所使用的特征,尖峰排序的平均准确率达到 91.48% 或 94.12%。所提出的可编程 SoC 经过优化,面积更小(9 平方毫米),功耗更低。片上处理和压缩功能消除了数据传输中的数据瓶颈(空间节省率高达 91%),并实现了完全自主且灵活的处理器驱动操作:综合上述设计考虑,片上特征提取和压缩功能克服了数据瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信