Autophagosome development and chloroplast segmentation occur synchronously for piecemeal degradation of chloroplasts.

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2024-11-07 DOI:10.7554/eLife.93232
Masanori Izumi, Sakuya Nakamura, Kohei Otomo, Hiroyuki Ishida, Jun Hidema, Tomomi Nemoto, Shinya Hagihara
{"title":"Autophagosome development and chloroplast segmentation occur synchronously for piecemeal degradation of chloroplasts.","authors":"Masanori Izumi, Sakuya Nakamura, Kohei Otomo, Hiroyuki Ishida, Jun Hidema, Tomomi Nemoto, Shinya Hagihara","doi":"10.7554/eLife.93232","DOIUrl":null,"url":null,"abstract":"<p><p>Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"12 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542923/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.7554/eLife.93232","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.

自噬体的发育和叶绿体的分裂同步进行,以实现叶绿体的零星降解。
植物在叶片发育和成熟过程中将许多营养物质分配给叶绿体。当叶片衰老或经历糖饥饿时,自噬机制会降解叶绿体蛋白质,以促进营养物质的有效再利用。在这里,我们报告了负责叶绿体成分零星降解的自噬途径的细胞内动态。通过对叶绿体形态的活细胞监测,我们观察到糖饥饿叶片中叶绿体芽结构的形成。这些芽随后被释放出来,并作为一种自噬货物(称为含 Rubisco 体)进入液泡腔。出芽结构在核心自噬机制突变体中没有积累,这表明自噬体的产生是形成叶绿体芽所必需的。对叶绿体形态和自噬体发育的同时跟踪发现,自噬体的隔离膜在形成叶绿体芽之前与叶绿体的部分表面密切相互作用。叶绿体随后在与隔离膜相关的部位突出,与自噬体成熟同步分裂。这种与自噬相关的分裂不需要动态蛋白相关蛋白 5B,而动态蛋白相关蛋白 5B 构成了生长叶片中叶绿体增殖的分裂环。因此,在叶绿体相关隔离膜的发育过程中,可能会有一种未知的分裂机制将叶绿体破碎并降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信