Mangala Gowri Ponnapalli, Pranay Kumar Koochana, S Ch V Appa Rao Annam, Kavya Sunkara, Uma Rajeswari Batchu, Umme Ummarah Fariha, Sunil Misra
{"title":"Rare Sesterterpenoids from the Soil Derived Fungus, Aspergillus variecolor Strain SDG, Therapeutic Potential of Stellatic Acid and Docking Studies.","authors":"Mangala Gowri Ponnapalli, Pranay Kumar Koochana, S Ch V Appa Rao Annam, Kavya Sunkara, Uma Rajeswari Batchu, Umme Ummarah Fariha, Sunil Misra","doi":"10.1002/cbdv.202401951","DOIUrl":null,"url":null,"abstract":"<p><p>Ethyl acetate extract of the cultures of the soil-derived filamentous fungus, Aspergillus variecolor SDG strain from Nallamala forest resulted in the isolation of extremely rare sesterterpenoids, stellatic acid (1) and andilesin C (2). We report a thorough chemical characterization of these compounds using various spectroscopic techniques and evaluation of their in vitro preclinical therapeutic potential. Stellatic acid exhibits potent antioxidant activity with an IC50 of 38 µg/mL and significant anticancer activity against HeLa, HepG2, MCF7, and A549 cancer cell lines with an IC50 of 7-12 µM. On the other hand, andilesin C displayed moderate cytotoxicity against DU145 and B16F10 cancer cell lines but lacked antioxidant activity. Furthermore, the potential hypoglycemic property of stellatic acid was evaluated by measuring its inhibitory effect against α-glucosidase. It exhibited tenfold potency against yeast α-glucosidase (IC50 101.73 µg/mL) than mammalian α-glucosidase (IC50 1000.00 µg/mL). Docking studies were also performed to suggest the interaction mode of stellatic acid in the α-glucosidase enzyme active site. Notably, yeast α-glucosidase shows a higher affinity towards stellatic acid than mammalian α-glucosidase (3TOP). Thus, the in vitro preclinical study of stellatic acid suggests its potential efficacy in therapeutic drug development.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":" ","pages":"e202401951"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202401951","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ethyl acetate extract of the cultures of the soil-derived filamentous fungus, Aspergillus variecolor SDG strain from Nallamala forest resulted in the isolation of extremely rare sesterterpenoids, stellatic acid (1) and andilesin C (2). We report a thorough chemical characterization of these compounds using various spectroscopic techniques and evaluation of their in vitro preclinical therapeutic potential. Stellatic acid exhibits potent antioxidant activity with an IC50 of 38 µg/mL and significant anticancer activity against HeLa, HepG2, MCF7, and A549 cancer cell lines with an IC50 of 7-12 µM. On the other hand, andilesin C displayed moderate cytotoxicity against DU145 and B16F10 cancer cell lines but lacked antioxidant activity. Furthermore, the potential hypoglycemic property of stellatic acid was evaluated by measuring its inhibitory effect against α-glucosidase. It exhibited tenfold potency against yeast α-glucosidase (IC50 101.73 µg/mL) than mammalian α-glucosidase (IC50 1000.00 µg/mL). Docking studies were also performed to suggest the interaction mode of stellatic acid in the α-glucosidase enzyme active site. Notably, yeast α-glucosidase shows a higher affinity towards stellatic acid than mammalian α-glucosidase (3TOP). Thus, the in vitro preclinical study of stellatic acid suggests its potential efficacy in therapeutic drug development.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.