Direct Data-Driven Design of LPV Controllers and Polytopic Invariant Sets With Cross-Covariance Noise Bounds

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Manas Mejari;Valentina Breschi
{"title":"Direct Data-Driven Design of LPV Controllers and Polytopic Invariant Sets With Cross-Covariance Noise Bounds","authors":"Manas Mejari;Valentina Breschi","doi":"10.1109/LCSYS.2024.3487504","DOIUrl":null,"url":null,"abstract":"We propose a direct data-driven method for the concurrent computation of polytopic robust control invariant (RCI) sets and the associated invariance-inducing control laws for linear parameter-varying (LPV) systems. We present a data-based covariance parameterization of the gain-scheduled controller and the closed-loop dynamics and show that by assuming bounded cross-covariance noise, the invariance condition can be formulated as a set of data-based LMIs such that the number of decision variables are independent of the length of the dataset. These LMIs are combined with polytopic state-input constraints in a convex semi-definite program to maximize the volume of the RCI set. A numerical example demonstrates the computational effectiveness of the proposed method in synthesizing RCI sets even with large datasets.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2427-2432"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10737127/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a direct data-driven method for the concurrent computation of polytopic robust control invariant (RCI) sets and the associated invariance-inducing control laws for linear parameter-varying (LPV) systems. We present a data-based covariance parameterization of the gain-scheduled controller and the closed-loop dynamics and show that by assuming bounded cross-covariance noise, the invariance condition can be formulated as a set of data-based LMIs such that the number of decision variables are independent of the length of the dataset. These LMIs are combined with polytopic state-input constraints in a convex semi-definite program to maximize the volume of the RCI set. A numerical example demonstrates the computational effectiveness of the proposed method in synthesizing RCI sets even with large datasets.
直接数据驱动设计 LPV 控制器和具有交叉协方差噪声约束的多拓扑不变集
我们提出了一种直接的数据驱动方法,用于同时计算线性参数变化(LPV)系统的多顶稳健控制不变性(RCI)集和相关的不变性诱导控制法。我们提出了增益调度控制器和闭环动力学的基于数据的协方差参数化,并证明通过假设有界交叉协方差噪声,不变性条件可表述为一组基于数据的 LMI,其中决策变量的数量与数据集的长度无关。这些 LMI 与凸半有限元程序中的多拓扑状态输入约束相结合,可使 RCI 集的体积最大化。一个数值示例证明了所提方法在合成 RCI 集时的计算有效性,即使数据集很大也不例外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信