PEO/cysteine composite nanofiber-based triboelectric nanogenerator for tiny mechanical energy harvesting

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yijun Hao, Jia Yang, Xiaopeng Zhu, Keke Hong, Jiayu Su, Yong Qin, Wei Su, Hongke Zhang, Chuguo Zhang, Xiuhan Li
{"title":"PEO/cysteine composite nanofiber-based triboelectric nanogenerator for tiny mechanical energy harvesting","authors":"Yijun Hao, Jia Yang, Xiaopeng Zhu, Keke Hong, Jiayu Su, Yong Qin, Wei Su, Hongke Zhang, Chuguo Zhang, Xiuhan Li","doi":"10.1039/d4ta06845a","DOIUrl":null,"url":null,"abstract":"Triboelectric nanogenerator (TENG) has acted as a promising method for capturing mechanical energy. However, traditional polymer triboelectric materials result burden to environment, the natural/biodegradable tribo-materials have the disadvantages of poor output performance. For this purpose, we proposed a polyethylene oxide (PEO) /cysteine composite nanofiber film (PCF) which prepared from biodegradable polymer PEO and natural cysteine. Thanks to the superior tribo-positive properties of PEO and cysteine, the electrical performance of PCF-based TENG (PC-TENG) with 4 wt% cysteine is several times than that of pure PEO nanofiber film. In addition, PC-TENG obtain better power density (6.6 W/m2), which is 3-110 times more than that of studies using related eco-friendly materials as tribo-layer. Importantly, we designed multi-layer funnel-shaped TENG (MF-TENG) which constructed by 4 layers of PC-TENG, which can effectively harvest a variety of tiny mechanical energy to built self-powered electronics devices by integrating the power management circuit. This research offers an efficient approach for the practical application of natural and environmental-friendly material-based TENGs in energy harvesting and power supply in Internet of Things.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"34 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06845a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Triboelectric nanogenerator (TENG) has acted as a promising method for capturing mechanical energy. However, traditional polymer triboelectric materials result burden to environment, the natural/biodegradable tribo-materials have the disadvantages of poor output performance. For this purpose, we proposed a polyethylene oxide (PEO) /cysteine composite nanofiber film (PCF) which prepared from biodegradable polymer PEO and natural cysteine. Thanks to the superior tribo-positive properties of PEO and cysteine, the electrical performance of PCF-based TENG (PC-TENG) with 4 wt% cysteine is several times than that of pure PEO nanofiber film. In addition, PC-TENG obtain better power density (6.6 W/m2), which is 3-110 times more than that of studies using related eco-friendly materials as tribo-layer. Importantly, we designed multi-layer funnel-shaped TENG (MF-TENG) which constructed by 4 layers of PC-TENG, which can effectively harvest a variety of tiny mechanical energy to built self-powered electronics devices by integrating the power management circuit. This research offers an efficient approach for the practical application of natural and environmental-friendly material-based TENGs in energy harvesting and power supply in Internet of Things.
基于 PEO/半胱氨酸复合纳米纤维的微型机械能采集三电纳米发电机
三电纳米发电机(TENG)是一种很有前途的获取机械能的方法。然而,传统的高分子三电材料会对环境造成负担,天然/可生物降解的三电材料也存在输出性能差的缺点。为此,我们提出了一种由生物可降解聚合物 PEO 和天然半胱氨酸制备而成的聚氧化乙烯(PEO)/半胱氨酸复合纳米纤维膜(PCF)。由于 PEO 和半胱氨酸具有优异的三正特性,含有 4 wt% 半胱氨酸的 PCF 基 TENG(PC-TENG)的电性能是纯 PEO 纳米纤维膜的数倍。此外,PC-TENG 还能获得更高的功率密度(6.6 W/m2),是使用相关环保材料作为三联结层的研究结果的 3-110 倍。重要的是,我们设计了由 4 层 PC-TENG 构成的多层漏斗状 TENG(MF-TENG),通过集成电源管理电路,它可以有效地收集各种微小的机械能,从而构建自供电电子设备。这项研究为基于天然环保材料的 TENG 在物联网能量采集和供电领域的实际应用提供了一种有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信